|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ResNet."""
- import math
-
- import mindspore.nn as nn
- import numpy as np
- from mindspore.common.tensor import Tensor
- from mindspore.ops import operations as P
- from second_order.thor_layer import Conv2d_Thor, Dense_Thor
-
-
- def calculate_gain(nonlinearity, param=None):
- linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']
- if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
- return 1
- elif nonlinearity == 'tanh':
- return 5.0 / 3
- elif nonlinearity == 'relu':
- return math.sqrt(2.0)
- elif nonlinearity == 'leaky_relu':
- if param is None:
- negative_slope = 0.01
- elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):
- # True/False are instances of int, hence check above
- negative_slope = param
- else:
- raise ValueError("negative_slope {} not a valid number".format(param))
- return math.sqrt(2.0 / (1 + negative_slope ** 2))
- else:
- raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
-
-
- def _calculate_fan_in_and_fan_out(tensor):
- dimensions = len(tensor)
- if dimensions < 2:
- raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")
-
- if dimensions == 2: # Linear
- fan_in = tensor[1]
- fan_out = tensor[0]
- else:
- num_input_fmaps = tensor[1]
- num_output_fmaps = tensor[0]
- receptive_field_size = 1
- if dimensions > 2:
- receptive_field_size = tensor[2] * tensor[3]
- fan_in = num_input_fmaps * receptive_field_size
- fan_out = num_output_fmaps * receptive_field_size
- return fan_in, fan_out
-
-
- def _calculate_correct_fan(tensor, mode):
- mode = mode.lower()
- valid_modes = ['fan_in', 'fan_out']
- if mode not in valid_modes:
- raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes))
-
- fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
- return fan_in if mode == 'fan_in' else fan_out
-
-
- def kaiming_normal(inputs_shape, a=0, mode='fan_in', nonlinearity='leaky_relu'):
- fan = _calculate_correct_fan(inputs_shape, mode)
- gain = calculate_gain(nonlinearity, a)
- std = gain / math.sqrt(fan)
- return np.random.normal(0, std, size=inputs_shape).astype(np.float32)
-
-
- def kaiming_uniform(inputs_shape, a=0, mode='fan_in', nonlinearity='leaky_relu'):
- fan = _calculate_correct_fan(inputs_shape, mode)
- gain = calculate_gain(nonlinearity, a)
- std = gain / math.sqrt(fan)
- bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
- return np.random.uniform(-bound, bound, size=inputs_shape).astype(np.float32)
-
-
- def _conv3x3(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278):
- weight_shape = (out_channel, in_channel, 3, 3)
- weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu'))
- return Conv2d_Thor(in_channel, out_channel,
- kernel_size=3, stride=stride, padding=0, pad_mode='same', weight_init=weight,
- damping=damping, loss_scale=loss_scale, frequency=frequency)
- # return nn.Conv2d(in_channel, out_channel,
- # kernel_size=3, stride=stride, padding=0, pad_mode='same', weight_init=weight)
-
-
- def _conv1x1(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278):
- weight_shape = (out_channel, in_channel, 1, 1)
- weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu'))
- return Conv2d_Thor(in_channel, out_channel,
- kernel_size=1, stride=stride, padding=0, pad_mode='same', weight_init=weight,
- damping=damping, loss_scale=loss_scale, frequency=frequency)
-
-
- def _conv7x7(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278):
- weight_shape = (out_channel, in_channel, 7, 7)
- weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu'))
- return Conv2d_Thor(in_channel, out_channel,
- kernel_size=7, stride=stride, padding=0, pad_mode='same', weight_init=weight,
- damping=damping, loss_scale=loss_scale, frequency=frequency)
-
-
- def _bn(channel):
- return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9,
- gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1)
-
-
- def _bn_last(channel):
- return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9,
- gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1)
-
-
- def _fc(in_channel, out_channel, damping, loss_scale, frequency):
- weight_shape = (out_channel, in_channel)
- weight = Tensor(kaiming_uniform(weight_shape, a=math.sqrt(5))
- return Dense_Thor(in_channel, out_channel, has_bias=False, weight_init=weight,
- bias_init=0, damping=damping, loss_scale=loss_scale, frequency=frequency)
-
-
- class ResidualBlock(nn.Cell):
- """
- ResNet V1 residual block definition.
-
- Args:
- in_channel (int): Input channel.
- out_channel (int): Output channel.
- stride (int): Stride size for the first convolutional layer. Default: 1.
-
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> ResidualBlock(3, 256, stride=2)
- """
- expansion = 4
-
- def __init__(self,
- in_channel,
- out_channel,
- stride=1,
- damping=0.03,
- loss_scale=1,
- frequency=278):
- super(ResidualBlock, self).__init__()
-
- channel = out_channel // self.expansion
- self.conv1 = _conv1x1(in_channel, channel, stride=1, damping=damping, loss_scale=loss_scale,
- frequency=frequency)
- self.bn1 = _bn(channel)
-
- self.conv2 = _conv3x3(channel, channel, stride=stride, damping=damping, loss_scale=loss_scale,
- frequency=frequency)
- self.bn2 = _bn(channel)
-
- self.conv3 = _conv1x1(channel, out_channel, stride=1, damping=damping, loss_scale=loss_scale,
- frequency=frequency)
- self.bn3 = _bn_last(out_channel)
-
- self.relu = nn.ReLU()
-
- self.down_sample = False
-
- if stride != 1 or in_channel != out_channel:
- self.down_sample = True
- self.down_sample_layer = None
-
- if self.down_sample:
- self.down_sample_layer = nn.SequentialCell([_conv1x1(in_channel, out_channel, stride,
- damping=damping, loss_scale=loss_scale,
- frequency=frequency),
- _bn(out_channel)])
- self.add = P.TensorAdd()
-
- def construct(self, x):
- identity = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- if self.down_sample:
- identity = self.down_sample_layer(identity)
-
- out = self.add(out, identity)
- out = self.relu(out)
-
- return out
-
-
- class ResNet(nn.Cell):
- """
- ResNet architecture.
-
- Args:
- block (Cell): Block for network.
- layer_nums (list): Numbers of block in different layers.
- in_channels (list): Input channel in each layer.
- out_channels (list): Output channel in each layer.
- strides (list): Stride size in each layer.
- num_classes (int): The number of classes that the training images are belonging to.
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> ResNet(ResidualBlock,
- >>> [3, 4, 6, 3],
- >>> [64, 256, 512, 1024],
- >>> [256, 512, 1024, 2048],
- >>> [1, 2, 2, 2],
- >>> 10)
- """
-
- def __init__(self,
- block,
- layer_nums,
- in_channels,
- out_channels,
- strides,
- num_classes,
- damping,
- loss_scale,
- frequency):
- super(ResNet, self).__init__()
-
- if not len(layer_nums) == len(in_channels) == len(out_channels) == 4:
- raise ValueError("the length of layer_num, in_channels, out_channels list must be 4!")
-
- self.conv1 = _conv7x7(3, 64, stride=2, damping=damping, loss_scale=loss_scale, frequency=frequency)
- self.bn1 = _bn(64)
- self.relu = P.ReLU()
- self.maxpool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2)
-
- self.layer1 = self._make_layer(block,
- layer_nums[0],
- in_channel=in_channels[0],
- out_channel=out_channels[0],
- stride=strides[0],
- damping=damping,
- loss_scale=loss_scale,
- frequency=frequency)
- self.layer2 = self._make_layer(block,
- layer_nums[1],
- in_channel=in_channels[1],
- out_channel=out_channels[1],
- stride=strides[1],
- damping=damping,
- loss_scale=loss_scale,
- frequency=frequency)
- self.layer3 = self._make_layer(block,
- layer_nums[2],
- in_channel=in_channels[2],
- out_channel=out_channels[2],
- stride=strides[2], damping=damping,
- loss_scale=loss_scale,
- frequency=frequency)
- self.layer4 = self._make_layer(block,
- layer_nums[3],
- in_channel=in_channels[3],
- out_channel=out_channels[3],
- stride=strides[3],
- damping=damping,
- loss_scale=loss_scale,
- frequency=frequency)
-
- self.mean = P.ReduceMean(keep_dims=True)
- self.flatten = nn.Flatten()
- self.end_point = _fc(out_channels[3], num_classes, damping=damping, loss_scale=loss_scale, frequency=frequency)
-
- def _make_layer(self, block, layer_num, in_channel, out_channel, stride,
- damping, loss_scale, frequency):
- """
- Make stage network of ResNet.
-
- Args:
- block (Cell): Resnet block.
- layer_num (int): Layer number.
- in_channel (int): Input channel.
- out_channel (int): Output channel.
- stride (int): Stride size for the first convolutional layer.
-
- Returns:
- SequentialCell, the output layer.
-
- Examples:
- >>> _make_layer(ResidualBlock, 3, 128, 256, 2)
- """
- layers = []
-
- resnet_block = block(in_channel, out_channel, stride=stride,
- damping=damping, loss_scale=loss_scale, frequency=frequency)
- layers.append(resnet_block)
-
- for _ in range(1, layer_num):
- resnet_block = block(out_channel, out_channel, stride=1,
- damping=damping, loss_scale=loss_scale, frequency=frequency)
- layers.append(resnet_block)
-
- return nn.SequentialCell(layers)
-
- def construct(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- c1, argmax = self.maxpool(x)
-
- c2 = self.layer1(c1)
- c3 = self.layer2(c2)
- c4 = self.layer3(c3)
- c5 = self.layer4(c4)
-
- out = self.mean(c5, (2, 3))
- out = self.flatten(out)
- out = self.end_point(out)
-
- return out
-
-
- def resnet50(class_num=10, damping=0.03, loss_scale=1, frequency=278):
- """
- Get ResNet50 neural network.
-
- Args:
- class_num (int): Class number.
-
- Returns:
- Cell, cell instance of ResNet50 neural network.
-
- Examples:
- >>> net = resnet50(10)
- """
- return ResNet(ResidualBlock,
- [3, 4, 6, 3],
- [64, 256, 512, 1024],
- [256, 512, 1024, 2048],
- [1, 2, 2, 2],
- class_num,
- damping,
- loss_scale,
- frequency)
|