|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test_bprop """
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.common import Tensor
- from mindspore.common.api import ms_function
- from mindspore.common.parameter import Parameter
- from mindspore.ops import operations as P
- from ....mindspore_test_framework.utils.bprop_util import bprop
-
-
- def setup_module():
- context.set_context(mode=context.PYNATIVE_MODE)
-
-
- class Net(nn.Cell):
- """ Net definition """
-
- def __init__(self):
- super(Net, self).__init__()
- self.matmul = P.MatMul()
- self.z = Parameter(Tensor(np.array([1.0], np.float32)), name='z')
-
- @ms_function
- def construct(self, x, y):
- x = x * self.z
- out = self.matmul(x, y)
- return x, out
-
-
- def test_bprop_no_sens():
- grads = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)),
- Tensor(np.ones([3, 2]).astype(np.float32)), wrt=['inputs'])
- print(grads)
-
-
- def test_bprop_sens():
- grads = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)),
- grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)),
- Tensor(np.ones([2, 2]).astype(np.float32))), wrt=['inputs'])
- print(grads)
-
-
- def test_bprop_first_only():
- grads = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)),
- grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)),
- Tensor(np.ones([2, 2]).astype(np.float32))))
- print(grads)
-
-
- def test_bprop_wrt_params():
- net = Net()
- grads = bprop(net, Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)),
- grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)),
- Tensor(np.ones([2, 2]).astype(np.float32))),
- wrt=['params'],
- params=net.trainable_params())
- print(grads)
-
-
- def test_bprop_wrt_params_no_sens():
- net = Net()
- grads = bprop(net, Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)),
- wrt=['params'],
- params=net.trainable_params())
- print(grads)
-
-
- def test_bprop_wrt_inputs_and_params():
- net = Net()
- grads = bprop(net, Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)),
- grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)),
- Tensor(np.ones([2, 2]).astype(np.float32))),
- wrt=['inputs', 'params'],
- params=net.trainable_params())
- print(grads)
|