|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test dynamic shape """
- import numpy as np
-
- from mindspore import Tensor, context, nn, Parameter
- from mindspore import dtype as mstype
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
-
-
- def test_sparse_apply_proximal_ada_grad():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.sparse_apply_proximal_adagrad = P.SparseApplyProximalAdagrad()
- self.var = Parameter(Tensor(np.random.rand(7800, 80).astype(np.float32)), name="var")
- self.accum = Parameter(Tensor(np.random.rand(7800, 80).astype(np.float32)), name="accum")
- self.lr = 0.01
- self.l1 = 0.0
- self.l2 = 0.0
-
- def construct(self, grad, indices):
- out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad, indices)
- return out[0]
-
- class NetWrapper(nn.Cell):
- def __init__(self):
- super(NetWrapper, self).__init__()
- self.unq = P.Unique()
- self.add = P.TensorAdd()
- self.expand_dims = P.ExpandDims()
- self.cast = P.Cast()
- self.net = Net()
-
- def construct(self, grad, inp):
- ids, _ = self.unq(inp)
- new_grad = self.expand_dims(ids, 1)
- new_grad = self.cast(new_grad, mstype.float32) + grad
- return self.net(new_grad, ids)
-
- net = NetWrapper()
- grad = Tensor(np.random.rand(1, 80).astype(np.float32))
- indices = Tensor(np.ones([7800]), mstype.int32)
- net(grad, indices)
-
-
- def test_sparse_apply_ftrl():
- class SparseApplyFtrlNet(nn.Cell):
- def __init__(self):
- super(SparseApplyFtrlNet, self).__init__()
- self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5)
- self.var = Parameter(Tensor(np.random.rand(7800, 80).astype(np.float32)), name="var")
- self.accum = Parameter(Tensor(np.random.rand(7800, 80).astype(np.float32)), name="accum")
- self.linear = Parameter(Tensor(np.random.rand(7800, 80).astype(np.float32)), name="linear")
-
- def construct(self, grad, indices):
- out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices)
- return out[0]
-
- class NetWrapper(nn.Cell):
- def __init__(self):
- super(NetWrapper, self).__init__()
- self.unq = P.Unique()
- self.add = P.TensorAdd()
- self.expand_dims = P.ExpandDims()
- self.cast = P.Cast()
- self.net = SparseApplyFtrlNet()
-
- def construct(self, grad, inp):
- ids, _ = self.unq(inp)
- new_grad = self.expand_dims(ids, 1)
- new_grad = self.cast(new_grad, mstype.float32) + grad
- return self.net(new_grad, ids)
-
- net = NetWrapper()
- grad = Tensor(np.random.rand(1, 80).astype(np.float32))
- indices = Tensor(np.ones([7800]), mstype.int32)
- net(grad, indices)
-
-
- def test_gatherv2():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.unq = P.Unique()
- self.gather = P.GatherV2()
- self.yy = Tensor(np.ones([8], dtype=np.int32))
-
- def construct(self, x, y):
- shp = P.Shape()(self.yy)
- y = P.Reshape()(y, shp)
- u, _ = self.unq(y)
- u_shp = P.DynamicShape()(u)
- z = self.gather(x, u, 0)
- return z, u_shp
-
- x = Tensor(np.ones([20, 12], dtype=np.float32))
- y = Tensor(np.ones([2, 4], dtype=np.int32))
- net = Net()
- net(x, y)
-
-
- def test_segmentsum():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.unq = P.Unique()
- self.segment_ids = Tensor([0, 0, 1, 2, 1, 1, 1, 1], mstype.int32)
- self.sum = P.UnsortedSegmentSum()
- def construct(self, x):
- u, _ = self.unq(x)
- shp = P.DynamicShape()(u)
- z = self.sum(x, self.segment_ids, shp[0])
- return z, shp[0]
-
- x = Tensor(np.ones([8], dtype=np.int32))
- net = Net()
- net(x)
-
-
- def test_addn():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.unq = P.Unique()
- self.addn = P.AddN()
-
- def construct(self, x):
- u, _ = self.unq(x)
- u = self.addn((u, u, u))
- z = self.addn([u, u])
- return z
-
- y = Tensor(np.ones([8], dtype=np.int32))
- net = Net()
- net(y)
|