|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import pytest
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.c_transforms as c_transforms
- from mindspore import log as logger
- from util import save_and_check_md5
-
- GENERATE_GOLDEN = False
-
- IMAGENET_RAWDATA_DIR = "../data/dataset/testImageNetData2/train"
- IMAGENET_TFFILE_DIR = ["../data/dataset/test_tf_file_3_images2/train-0000-of-0001.data",
- "../data/dataset/test_tf_file_3_images2/train-0000-of-0002.data",
- "../data/dataset/test_tf_file_3_images2/train-0000-of-0003.data",
- "../data/dataset/test_tf_file_3_images2/train-0000-of-0004.data"]
- MNIST_DATA_DIR = "../data/dataset/testMnistData"
- MANIFEST_DATA_FILE = "../data/dataset/testManifestData/test.manifest"
- CIFAR10_DATA_DIR = "../data/dataset/testCifar10Data"
- COCO_DATA_DIR = "../data/dataset/testCOCO/train/"
- ANNOTATION_FILE = "../data/dataset/testCOCO/annotations/train.json"
- VOC_DATA_DIR = "../data/dataset/testVOC2012"
-
-
- def test_numpyslices_sampler_no_chain():
- """
- Test NumpySlicesDataset with sampler, no chain
- """
- logger.info("test_numpyslices_sampler_no_chain")
-
- # Create NumpySlicesDataset with sampler, no chain
- np_data = [1, 2, 3, 4]
- sampler = ds.SequentialSampler(start_index=1, num_samples=2)
- data1 = ds.NumpySlicesDataset(np_data, sampler=sampler)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 2
-
- # Verify number of rows
- assert sum([1 for _ in data1]) == 2
-
- # Verify dataset contents
- res = []
- for item in data1.create_tuple_iterator(num_epochs=1, output_numpy=True):
- logger.info("item: {}".format(item))
- res.append(item)
- logger.info("dataset: {}".format(res))
-
-
- def test_numpyslices_sampler_chain():
- """
- Test NumpySlicesDataset sampler chain
- """
- logger.info("test_numpyslices_sampler_chain")
-
- # Create NumpySlicesDataset with sampler chain
- # Use 1 statement to add child sampler
- np_data = [1, 2, 3, 4]
- sampler = ds.SequentialSampler(start_index=1, num_samples=2)
- sampler = sampler.add_child(ds.SequentialSampler(start_index=1, num_samples=2))
- data1 = ds.NumpySlicesDataset(np_data, sampler=sampler)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 4
-
- # Verify number of rows
- assert sum([1 for _ in data1]) == 4
-
- # Verify dataset contents
- res = []
- for item in data1.create_tuple_iterator(num_epochs=1, output_numpy=True):
- logger.info("item: {}".format(item))
- res.append(item)
- logger.info("dataset: {}".format(res))
-
-
- def test_numpyslices_sampler_chain2():
- """
- Test NumpySlicesDataset sampler chain
- """
- logger.info("test_numpyslices_sampler_chain2")
-
- # Create NumpySlicesDataset with sampler chain
- # Use 2 statements to add child sampler
- np_data = [1, 2, 3, 4]
- sampler = ds.SequentialSampler(start_index=1, num_samples=1)
- child_sampler = ds.SequentialSampler(start_index=1, num_samples=2)
- sampler.add_child(child_sampler)
- data1 = ds.NumpySlicesDataset(np_data, sampler=sampler)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 1
-
- # Verify number of rows
- assert sum([1 for _ in data1]) == 1
-
- # Verify dataset contents
- res = []
- for item in data1.create_tuple_iterator(num_epochs=1, output_numpy=True):
- logger.info("item: {}".format(item))
- res.append(item)
- logger.info("dataset: {}".format(res))
-
-
- def test_imagefolder_sampler_chain():
- """
- Test ImageFolderDataset sampler chain
- """
- logger.info("test_imagefolder_sampler_chain")
-
- sampler = ds.SequentialSampler(start_index=1, num_samples=3)
- child_sampler = ds.PKSampler(2)
- sampler.add_child(child_sampler)
- data1 = ds.ImageFolderDataset(IMAGENET_RAWDATA_DIR, sampler=sampler)
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 3
- # Verify number of rows
- assert sum([1 for _ in data1]) == 3
-
- # Verify dataset contents
- res = []
- for item in data1.create_tuple_iterator(num_epochs=1, output_numpy=True):
- logger.info("item: {}".format(item))
- res.append(item)
- logger.info("dataset: {}".format(res))
-
-
- def test_mnist_sampler_chain():
- """
- Test Mnist sampler chain
- """
- logger.info("test_mnist_sampler_chain")
-
- sampler = ds.DistributedSampler(num_shards=1, shard_id=0, shuffle=False, num_samples=3, offset=1)
- child_sampler = ds.RandomSampler(replacement=True, num_samples=4)
- sampler.add_child(child_sampler)
- data1 = ds.MnistDataset(MNIST_DATA_DIR, sampler=sampler)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 3
- # Verify number of rows
- assert sum([1 for _ in data1]) == 3
-
- # Verify dataset contents
- res = []
- for item in data1.create_tuple_iterator(num_epochs=1, output_numpy=True):
- logger.info("item: {}".format(item))
- res.append(item)
- logger.info("dataset: {}".format(res))
-
-
- def test_manifest_sampler_chain():
- """
- Test Manifest sampler chain
- """
- logger.info("test_manifest_sampler_chain")
-
- sampler = ds.RandomSampler(replacement=True, num_samples=2)
- child_sampler = ds.DistributedSampler(num_shards=1, shard_id=0, shuffle=False, num_samples=3, offset=1)
- sampler.add_child(child_sampler)
- data1 = ds.ManifestDataset(MANIFEST_DATA_FILE, sampler=sampler)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 2
- # Verify number of rows
- assert sum([1 for _ in data1]) == 2
-
- # Verify dataset contents
- res = []
- for item in data1.create_tuple_iterator(num_epochs=1, output_numpy=True):
- logger.info("item: {}".format(item))
- res.append(item)
- logger.info("dataset: {}".format(res))
-
-
- def test_coco_sampler_chain():
- """
- Test Coco sampler chain
- """
- logger.info("test_coco_sampler_chain")
-
- sampler = ds.DistributedSampler(num_shards=2, shard_id=0, shuffle=False, num_samples=5)
- child_sampler = ds.RandomSampler(replacement=True, num_samples=2)
- sampler.add_child(child_sampler)
- data1 = ds.CocoDataset(COCO_DATA_DIR, annotation_file=ANNOTATION_FILE, task="Detection", decode=True,
- sampler=sampler)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 1
-
- # Verify number of rows
- assert sum([1 for _ in data1]) == 1
-
- # Verify dataset contents
- res = []
- for item in data1.create_tuple_iterator(num_epochs=1, output_numpy=True):
- logger.info("item: {}".format(item))
- res.append(item)
- logger.info("dataset: {}".format(res))
-
-
- def test_cifar_sampler_chain():
- """
- Test Cifar sampler chain
- """
- logger.info("test_cifar_sampler_chain")
-
- sampler = ds.DistributedSampler(num_shards=2, shard_id=0, shuffle=False, num_samples=5)
- child_sampler = ds.RandomSampler(replacement=True, num_samples=4)
- child_sampler2 = ds.SequentialSampler(start_index=0, num_samples=2)
- child_sampler.add_child(child_sampler2)
- sampler.add_child(child_sampler)
- data1 = ds.Cifar10Dataset(CIFAR10_DATA_DIR, sampler=sampler)
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 1
-
- # Verify number of rows
- assert sum([1 for _ in data1]) == 1
-
- # Verify dataset contents
- res = []
- for item in data1.create_tuple_iterator(num_epochs=1, output_numpy=True):
- logger.info("item: {}".format(item))
- res.append(item)
- logger.info("dataset: {}".format(res))
-
-
- def test_voc_sampler_chain():
- """
- Test VOC sampler chain
- """
- logger.info("test_voc_sampler_chain")
-
- sampler = ds.DistributedSampler(num_shards=2, shard_id=0, shuffle=False, num_samples=5)
- child_sampler = ds.SequentialSampler(start_index=0)
- sampler.add_child(child_sampler)
- data1 = ds.VOCDataset(VOC_DATA_DIR, task="Segmentation", sampler=sampler)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 5
-
- # Verify number of rows
- assert sum([1 for _ in data1]) == 5
-
- # Verify dataset contents
- res = []
- for item in data1.create_tuple_iterator(num_epochs=1, output_numpy=True):
- logger.info("item: {}".format(item))
- res.append(item)
- logger.info("dataset: {}".format(res))
-
-
- def test_numpyslices_sampler_chain_batch():
- """
- Test NumpySlicesDataset sampler chaining, with batch
- """
- logger.info("test_numpyslices_sampler_chain_batch")
-
- # Create NumpySlicesDataset with sampler chain
- np_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- sampler = ds.SequentialSampler(start_index=1, num_samples=3)
- sampler = sampler.add_child(ds.SequentialSampler(start_index=1, num_samples=2))
- data1 = ds.NumpySlicesDataset(np_data, sampler=sampler)
- data1 = data1.batch(batch_size=3, drop_remainder=False)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 4
-
- # Verify number of rows
- assert sum([1 for _ in data1]) == 4
-
- # Verify dataset contents
- res = []
- for item in data1.create_tuple_iterator(num_epochs=1, output_numpy=True):
- logger.info("item: {}".format(item))
- res.append(item)
- logger.info("dataset: {}".format(res))
-
-
- def test_sampler_chain_errors():
- """
- Test error cases for sampler chains
- """
- logger.info("test_sampler_chain_errors")
-
- error_msg_1 = "'NoneType' object has no attribute 'add_child'"
- # Test add child sampler within child sampler
- sampler = ds.SequentialSampler(start_index=1, num_samples=2)
- sampler = sampler.add_child(ds.SequentialSampler(start_index=1, num_samples=2))
- with pytest.raises(AttributeError, match=error_msg_1):
- sampler.add_child(ds.SequentialSampler(start_index=1, num_samples=2))
-
- # error_msg_2 = "'NoneType' object has no attribute 'add_child'"
- # Test add second and nested child sampler
- sampler = ds.SequentialSampler(start_index=1, num_samples=2)
- child_sampler = ds.SequentialSampler(start_index=1, num_samples=2)
- sampler.add_child(child_sampler)
- child_sampler2 = ds.SequentialSampler(start_index=1, num_samples=2)
- sampler.add_child(child_sampler2)
- # FIXME - no error is raised; uncomment after code issue is resolved
- # with pytest.raises(AttributeError, match=error_msg_2):
- # sampler.add_child(child_sampler2)
- # np_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- # data1 = ds.NumpySlicesDataset(np_data, sampler=sampler)
-
- error_msg_3 = "Conflicting arguments during sampler assignments."
- # Test conflicting arguments (sampler and shuffle=False) for sampler (no chain)
- np_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- sampler = ds.SequentialSampler(start_index=1, num_samples=3)
- with pytest.raises(ValueError, match=error_msg_3):
- ds.NumpySlicesDataset(np_data, shuffle=False, sampler=sampler)
-
- # error_msg_4 = "Conflicting arguments during sampler assignments."
- # Test conflicting arguments (sampler and shuffle=False) for sampler chaining
- np_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- sampler = ds.SequentialSampler(start_index=1, num_samples=3)
- sampler = sampler.add_child(ds.SequentialSampler(start_index=1, num_samples=2))
- # FIXME - no error is raised; uncomment after code issue is resolved
- # with pytest.raises(ValueError, match=error_msg_4):
- # ds.NumpySlicesDataset(np_data, shuffle=False, sampler=sampler)
-
-
- def test_manifest_sampler_chain_repeat():
- """
- Test ManifestDataset sampler chain DistributedSampler->SequentialSampler, with repeat
- """
- logger.info("test_manifest_sampler_chain_batch")
- manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
-
- # Create sampler chain DistributedSampler->SequentialSampler
- sampler = ds.DistributedSampler(num_shards=1, shard_id=0, shuffle=False, num_samples=5)
- child_sampler = ds.SequentialSampler()
- sampler.add_child(child_sampler)
-
- # Create ManifestDataset with sampler chain
- data1 = ds.ManifestDataset(manifest_file, sampler=sampler)
- data1 = data1.repeat(count=2)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 10
-
- # Verify number of rows
- assert sum([1 for _ in data1]) == 10
-
- # Verify dataset contents
- filename = "sampler_chain_manifest_repeat_result.npz"
- save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_manifest_sampler_chain_batch_repeat():
- """
- Test ManifestDataset sampler chain DistributedSampler->SequentialSampler, with batch then repeat
- """
- logger.info("test_manifest_sampler_chain_batch_repeat")
- manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
-
- # Create sampler chain DistributedSampler->SequentialSampler
- sampler = ds.DistributedSampler(num_shards=1, shard_id=0, shuffle=False, num_samples=5)
- child_sampler = ds.SequentialSampler()
- sampler.add_child(child_sampler)
-
- # Create ManifestDataset with sampler chain
- data1 = ds.ManifestDataset(manifest_file, decode=True, sampler=sampler)
- one_hot_encode = c_transforms.OneHot(3)
- data1 = data1.map(operations=one_hot_encode, input_columns=["label"])
- data1 = data1.batch(batch_size=5, drop_remainder=False)
- data1 = data1.repeat(count=2)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 2
-
- # Verify number of rows
- # FIXME: Uncomment the following assert when code issue is resolved
- # assert sum([1 for _ in data1]) == 2
-
-
- if __name__ == '__main__':
- test_numpyslices_sampler_no_chain()
- test_numpyslices_sampler_chain()
- test_numpyslices_sampler_chain2()
- test_imagefolder_sampler_chain()
- test_mnist_sampler_chain()
- test_manifest_sampler_chain()
- test_coco_sampler_chain()
- test_cifar_sampler_chain()
- test_voc_sampler_chain()
- test_numpyslices_sampler_chain_batch()
- test_sampler_chain_errors()
- test_manifest_sampler_chain_repeat()
- test_manifest_sampler_chain_batch_repeat()
|