|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.common.dtype as mstype
- import mindspore.context as context
- from mindspore.common.tensor import Tensor
- from mindspore.nn import Cell
- from mindspore.ops import operations as P
- from mindspore.ops.operations import _inner_ops as inner
-
-
- class Net(Cell):
- def __init__(self, type0, type1):
- super(Net, self).__init__()
- self.Cast = P.Cast()
- self.type0 = type0
- self.type1 = type1
-
- def construct(self, x0, x1):
- output = (self.Cast(x0, self.type0),
- self.Cast(x1, self.type1))
- return output
-
-
- class NetDynamic(Cell):
- def __init__(self, type0, type1):
- super(NetDynamic, self).__init__()
- self.conv = inner.GpuConvertToDynamicShape()
- self.Cast = P.Cast()
- self.type0 = type0
- self.type1 = type1
-
- def construct(self, x0, x1):
- x0_conv = self.conv(x0)
- x1_conv = self.conv(x1)
- output = (self.Cast(x0_conv, self.type0),
- self.Cast(x1_conv, self.type1))
- return output
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t0 = mstype.float16
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16))
- t1 = mstype.float32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float16'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float32'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast1():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
- t0 = mstype.float32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
- t1 = mstype.float32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast2():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16))
- t0 = mstype.int32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16))
- t1 = mstype.float64
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float64'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast3():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64))
- t0 = mstype.int32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t1 = mstype.int32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'int32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast4():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
- t0 = mstype.float16
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
- t1 = mstype.int8
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float16'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'int8'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast5():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
- t0 = mstype.uint8
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
- t1 = mstype.bool_
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'uint8'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'bool'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast6():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
- t0 = mstype.float64
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
- t1 = mstype.float32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float64'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast7():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
- t0 = mstype.float32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
- t1 = mstype.float16
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float16'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast8():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
- t0 = mstype.int32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
- t1 = mstype.int16
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'int16'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast9():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
- t0 = mstype.int64
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
- t1 = mstype.float16
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int64'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float16'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast10():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
- t0 = mstype.int8
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
- t1 = mstype.float64
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int8'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float64'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast11():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
- t0 = mstype.int16
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
- t1 = mstype.int32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int16'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'int32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast12():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
- t0 = mstype.int64
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.uint8))
- t1 = mstype.float32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int64'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast13():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.uint8))
- t0 = mstype.int32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.uint8))
- t1 = mstype.float16
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float16'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast14():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
- t0 = mstype.float64
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
- t1 = mstype.float32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float64'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast15():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
- t0 = mstype.float16
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
- t1 = mstype.int32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float16'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'int32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast16():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
- t0 = mstype.float16
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64))
- t1 = mstype.float64
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float16'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float64'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast17():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
- t0 = mstype.float32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
- t1 = mstype.float16
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float16'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast18():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64))
- t0 = mstype.float32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64))
- t1 = mstype.float16
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float16'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast19():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
- t0 = mstype.bool_
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
- t1 = mstype.bool_
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'bool'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'bool'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast20():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64))
- t0 = mstype.bool_
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16))
- t1 = mstype.bool_
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'bool'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'bool'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast21():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t0 = mstype.bool_
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
- t1 = mstype.bool_
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'bool'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'bool'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast22():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.uint8))
- t0 = mstype.bool_
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
- t1 = mstype.bool_
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'bool'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'bool'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast23():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
- t0 = mstype.float32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
- t1 = mstype.float16
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float16'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast24():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
- t0 = mstype.int64
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
- t1 = mstype.int32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int64'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'int32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast25():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
- t0 = mstype.int16
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
- t1 = mstype.int8
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int16'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'int8'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast26():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
- t0 = mstype.int64
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
- t1 = mstype.float64
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int64'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float64'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast27():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t0 = mstype.float64
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t1 = mstype.uint64
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float64'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'uint64'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast28():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t0 = mstype.int8
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t1 = mstype.int16
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int8'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'int16'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast29():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t0 = mstype.int64
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t1 = mstype.uint8
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int64'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'uint8'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast30():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t0 = mstype.uint16
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t1 = mstype.uint32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'uint16'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'uint32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast31():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t0 = mstype.uint16
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t1 = mstype.uint32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = NetDynamic(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'uint16'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'uint32'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast32():
- np.random.seed(10)
- x = np.random.uniform(-5, 5, (3, 2)).astype(np.float16)
- x0 = Tensor(x)
- t0 = mstype.int32
- x1 = Tensor(x)
- t1 = mstype.float64
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int32'
- expected = x.astype(np.int32)
- assert (output[0].asnumpy() == expected).all()
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float64'
|