|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
- from mindspore import dtype
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
-
- class NetExpm1(nn.Cell):
- def __init__(self):
- super(NetExpm1, self).__init__()
- self.expm1 = P.Expm1()
-
- def construct(self, x):
- return self.expm1(x)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_expm1_op():
- x = np.random.rand(3, 8).astype(np.float32)
- y = np.random.rand(3, 8).astype(np.float16)
-
- expm1 = NetExpm1()
- output_x = expm1(Tensor(x, dtype=dtype.float32))
- expect_x = np.expm1(x)
- tol_x = 1e-6
- assert (np.abs(output_x.asnumpy() - expect_x) < tol_x).all()
-
- output_y = expm1(Tensor(y, dtype=dtype.float16))
- expect_y = np.expm1(y)
- tol_y = 1e-3
- assert (np.abs(output_y.asnumpy() - expect_y) < tol_y).all()
|