|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- import mindspore
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
-
-
- class SubNet(nn.Cell):
- def __init__(self):
- super(SubNet, self).__init__()
- self.sub = P.Sub()
-
- def construct(self, x, y):
- return self.sub(x, y)
-
-
- class DivNet(nn.Cell):
- def __init__(self):
- super(DivNet, self).__init__()
- self.div = P.Div()
-
- def construct(self, x, y):
- return self.div(x, y)
-
-
- class FloorDivNet(nn.Cell):
- def __init__(self):
- super(FloorDivNet, self).__init__()
- self.floor_div = P.FloorDiv()
-
- def construct(self, x, y):
- return self.floor_div(x, y)
-
-
- class ModNet(nn.Cell):
- def __init__(self):
- super(ModNet, self).__init__()
- self.mod = P.Mod()
-
- def construct(self, x, y):
- return self.mod(x, y)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_sub():
- x = np.random.rand(2, 3, 4, 4).astype(np.float32)
- y = np.random.rand(4, 1).astype(np.float32)
- net = SubNet()
- output = net(Tensor(x), Tensor(y, mindspore.float32))
- expect_output = x - y
- assert np.all(output.asnumpy() == expect_output)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu_training
- @pytest.mark.env_onecard
- def test_div():
- prop = 1 if np.random.random() < 0.5 else -1
- x0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
- y0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
- x1_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
- y1_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float32) * prop
- x2_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.float16) * prop
- y2_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float16) * prop
- x3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop
- y3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop
- x4_np = np.array(768).astype(np.float32) * prop
- y4_np = np.array(3072.5).astype(np.float32) * prop
- x5_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int32) * prop
- y5_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
- x6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
- y6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
- x7_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int64) * prop
- y7_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int64) * prop
-
- x0 = Tensor(x0_np)
- y0 = Tensor(y0_np)
- x1 = Tensor(x1_np)
- y1 = Tensor(y1_np)
- x2 = Tensor(x2_np)
- y2 = Tensor(y2_np)
- x3 = Tensor(x3_np)
- y3 = Tensor(y3_np)
- x4 = Tensor(x4_np)
- y4 = Tensor(y4_np)
- x5 = Tensor(x5_np)
- y5 = Tensor(y5_np)
- x6 = Tensor(x6_np)
- y6 = Tensor(y6_np)
- x7 = Tensor(x7_np)
- y7 = Tensor(y7_np)
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
- div = DivNet()
- output0 = div(x0, y0)
- expect0 = np.divide(x0_np, y0_np)
- diff0 = output0.asnumpy() - expect0
- error0 = np.ones(shape=expect0.shape) * 1.0e-5
- assert np.all(diff0 < error0)
- assert output0.shape == expect0.shape
-
- output1 = div(x1, y1)
- expect1 = np.divide(x1_np, y1_np)
- diff1 = output1.asnumpy() - expect1
- error1 = np.ones(shape=expect1.shape) * 1.0e-5
- assert np.all(diff1 < error1)
- assert output1.shape == expect1.shape
-
- output2 = div(x2, y2)
- expect2 = np.divide(x2_np, y2_np).astype(np.float16)
- diff2 = output2.asnumpy() - expect2
- error2 = np.ones(shape=expect2.shape) * 1.0e-5
- assert np.all(diff2 < error2)
- assert output2.shape == expect2.shape
-
- output3 = div(x3, y3)
- expect3 = np.divide(x3_np, y3_np)
- diff3 = output3.asnumpy() - expect3
- error3 = np.ones(shape=expect3.shape) * 1.0e-5
- assert np.all(diff3 < error3)
- assert output3.shape == expect3.shape
-
- output4 = div(x4, y4)
- expect4 = np.divide(x4_np, y4_np)
- diff4 = output4.asnumpy() - expect4
- error4 = np.ones(shape=expect4.shape) * 1.0e-5
- assert np.all(diff4 < error4)
- assert output4.shape == expect4.shape
-
- output5 = div(x5, y5)
- expect5 = x5_np // y5_np
- assert np.all(output5.asnumpy() == expect5)
-
- output6 = div(x6, y6)
- expect6 = np.divide(x6_np, y6_np)
- diff6 = output6.asnumpy() - expect6
- error6 = np.ones(shape=expect6.shape) * 1.0e-5
- assert np.all(diff6 < error6)
- assert output6.shape == expect6.shape
-
- output7 = div(x7, y7)
- expect7 = np.divide(x7_np, y7_np).astype(np.int64)
- assert np.all(output7.asnumpy() == expect7)
- assert output7.shape == expect7.shape
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu_training
- @pytest.mark.env_onecard
- def test_floor_div():
- prop = 1 if np.random.random() < 0.5 else -1
- x0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
- y0_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float32) * prop
- x1_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.float16) * prop
- y1_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float16) * prop
- x2_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int32) * prop
- y2_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
- x3_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
- y3_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
- x4_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int64) * prop
- y4_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int64) * prop
-
- x0 = Tensor(x0_np)
- y0 = Tensor(y0_np)
- x1 = Tensor(x1_np)
- y1 = Tensor(y1_np)
- x2 = Tensor(x2_np)
- y2 = Tensor(y2_np)
- x3 = Tensor(x3_np)
- y3 = Tensor(y3_np)
- x4 = Tensor(x4_np)
- y4 = Tensor(y4_np)
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
- floor_div = FloorDivNet()
- output0 = floor_div(x0, y0)
- expect0 = np.floor_divide(x0_np, y0_np)
- diff0 = output0.asnumpy() - expect0
- error0 = np.ones(shape=expect0.shape) * 1.0e-5
- assert np.all(diff0 < error0)
- assert output0.shape == expect0.shape
-
- output1 = floor_div(x1, y1)
- expect1 = np.floor_divide(x1_np, y1_np)
- diff1 = output1.asnumpy() - expect1
- error1 = np.ones(shape=expect1.shape) * 1.0e-5
- assert np.all(diff1 < error1)
- assert output1.shape == expect1.shape
-
- output2 = floor_div(x2, y2)
- expect2 = np.floor_divide(x2_np, y2_np).astype(np.float16)
- diff2 = output2.asnumpy() - expect2
- error2 = np.ones(shape=expect2.shape) * 1.0e-5
- assert np.all(diff2 < error2)
- assert output2.shape == expect2.shape
-
- output3 = floor_div(x3, y3)
- expect3 = np.floor_divide(x3_np, y3_np)
- diff3 = output3.asnumpy() - expect3
- error3 = np.ones(shape=expect3.shape) * 1.0e-5
- assert np.all(diff3 < error3)
- assert output3.shape == expect3.shape
-
- output4 = floor_div(x4, y4)
- expect4 = np.floor_divide(x4_np, y4_np)
- diff4 = output4.asnumpy() - expect4
- error4 = np.ones(shape=expect4.shape) * 1.0e-5
- assert np.all(diff4 < error4)
- assert output4.shape == expect4.shape
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu_training
- @pytest.mark.env_onecard
- def test_mod():
- prop = 1 if np.random.random() < 0.5 else -1
- x0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
- y0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
- x1_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
- y1_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float32) * prop
- x2_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.float16) * prop
- y2_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float16) * prop
- x3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop
- y3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop
- x4_np = np.array(768).astype(np.float32) * prop
- y4_np = np.array(3072.5).astype(np.float32) * prop
- x5_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int32) * prop
- y5_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
- x6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
- y6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
- x7_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int64) * prop
- y7_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int64) * prop
-
- x0 = Tensor(x0_np)
- y0 = Tensor(y0_np)
- x1 = Tensor(x1_np)
- y1 = Tensor(y1_np)
- x2 = Tensor(x2_np)
- y2 = Tensor(y2_np)
- x3 = Tensor(x3_np)
- y3 = Tensor(y3_np)
- x4 = Tensor(x4_np)
- y4 = Tensor(y4_np)
- x5 = Tensor(x5_np)
- y5 = Tensor(y5_np)
- x6 = Tensor(x6_np)
- y6 = Tensor(y6_np)
- x7 = Tensor(x7_np)
- y7 = Tensor(y7_np)
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
- mod = ModNet()
- output0 = mod(x0, y0)
- expect0 = np.mod(x0_np, y0_np)
- diff0 = output0.asnumpy() - expect0
- error0 = np.ones(shape=expect0.shape) * 1.0e-5
- assert np.all(diff0 < error0)
- assert output0.shape == expect0.shape
-
- output1 = mod(x1, y1)
- expect1 = np.mod(x1_np, y1_np)
- diff1 = output1.asnumpy() - expect1
- error1 = np.ones(shape=expect1.shape) * 1.0e-5
- assert np.all(diff1 < error1)
- assert output1.shape == expect1.shape
-
- output2 = mod(x2, y2)
- expect2 = np.mod(x2_np, y2_np).astype(np.float16)
- diff2 = output2.asnumpy() - expect2
- error2 = np.ones(shape=expect2.shape) * 1.0e-5
- assert np.all(diff2 < error2)
- assert output2.shape == expect2.shape
-
- output3 = mod(x3, y3)
- expect3 = np.mod(x3_np, y3_np)
- diff3 = output3.asnumpy() - expect3
- error3 = np.ones(shape=expect3.shape) * 1.0e-5
- assert np.all(diff3 < error3)
- assert output3.shape == expect3.shape
-
- output4 = mod(x4, y4)
- expect4 = np.mod(x4_np, y4_np)
- diff4 = output4.asnumpy() - expect4
- error4 = np.ones(shape=expect4.shape) * 1.0e-5
- assert np.all(diff4 < error4)
- assert output4.shape == expect4.shape
-
- output5 = mod(x5, y5)
- expect5 = np.mod(x5_np, y5_np)
- assert np.all(output5.asnumpy() == expect5)
- assert output5.shape == expect5.shape
-
- output6 = mod(x6, y6)
- expect6 = np.mod(x6_np, y6_np)
- diff6 = output6.asnumpy() - expect6
- error6 = np.ones(shape=expect6.shape) * 1.0e-5
- assert np.all(diff6 < error6)
- assert output6.shape == expect6.shape
-
- output7 = mod(x7, y7)
- expect7 = np.mod(x7_np, y7_np).astype(np.int64)
- assert np.all(output7.asnumpy() == expect7)
- assert output6.shape == expect6.shape
-
-
- test_sub()
- test_div()
- test_floor_div()
- test_mod()
|