|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test uncertainty toolbox """
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.c_transforms as C
- import mindspore.dataset.transforms.vision.c_transforms as CV
- import mindspore.nn as nn
- from mindspore import context, Tensor
- from mindspore.common import dtype as mstype
- from mindspore.common.initializer import TruncatedNormal
- from mindspore.dataset.transforms.vision import Inter
- from mindspore.nn.probability.toolbox.uncertainty_evaluation import UncertaintyEvaluation
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
-
- def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
- """weight initial for conv layer"""
- weight = weight_variable()
- return nn.Conv2d(in_channels, out_channels,
- kernel_size=kernel_size, stride=stride, padding=padding,
- weight_init=weight, has_bias=False, pad_mode="valid")
-
-
- def fc_with_initialize(input_channels, out_channels):
- """weight initial for fc layer"""
- weight = weight_variable()
- bias = weight_variable()
- return nn.Dense(input_channels, out_channels, weight, bias)
-
-
- def weight_variable():
- """weight initial"""
- return TruncatedNormal(0.02)
-
-
- class LeNet5(nn.Cell):
- def __init__(self, num_class=10, channel=1):
- super(LeNet5, self).__init__()
- self.num_class = num_class
- self.conv1 = conv(channel, 6, 5)
- self.conv2 = conv(6, 16, 5)
- self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
- self.fc2 = fc_with_initialize(120, 84)
- self.fc3 = fc_with_initialize(84, self.num_class)
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
- self.flatten = nn.Flatten()
-
- def construct(self, x):
- x = self.conv1(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.conv2(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.flatten(x)
- x = self.fc1(x)
- x = self.relu(x)
- x = self.fc2(x)
- x = self.relu(x)
- x = self.fc3(x)
- return x
-
-
- def create_dataset(data_path, batch_size=32, repeat_size=1,
- num_parallel_workers=1):
- """
- create dataset for train or test
- """
- # define dataset
- mnist_ds = ds.MnistDataset(data_path)
-
- resize_height, resize_width = 32, 32
- rescale = 1.0 / 255.0
- shift = 0.0
- rescale_nml = 1 / 0.3081
- shift_nml = -1 * 0.1307 / 0.3081
-
- # define map operations
- resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
- rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
- rescale_op = CV.Rescale(rescale, shift)
- hwc2chw_op = CV.HWC2CHW()
- type_cast_op = C.TypeCast(mstype.int32)
-
- # apply map operations on images
- mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)
-
- # apply DatasetOps
- buffer_size = 10000
- mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
- mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
- mnist_ds = mnist_ds.repeat(repeat_size)
-
- return mnist_ds
-
-
- if __name__ == '__main__':
- # get trained model
- network = LeNet5()
- param_dict = load_checkpoint('checkpoint_lenet.ckpt')
- load_param_into_net(network, param_dict)
- # get train and eval dataset
- epi_ds_train = create_dataset('workspace/mnist/train')
- ale_ds_train = create_dataset('workspace/mnist/train')
- ds_eval = create_dataset('workspace/mnist/test')
- evaluation = UncertaintyEvaluation(model=network,
- epi_train_dataset=epi_ds_train,
- ale_train_dataset=ale_ds_train,
- task_type='classification',
- num_classes=10,
- epochs=1,
- epi_uncer_model_path=None,
- ale_uncer_model_path=None,
- save_model=False)
- for eval_data in ds_eval.create_dict_iterator():
- eval_data = Tensor(eval_data['image'], mstype.float32)
- epistemic_uncertainty = evaluation.eval_epistemic_uncertainty(eval_data)
- aleatoric_uncertainty = evaluation.eval_aleatoric_uncertainty(eval_data)
|