|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import os
-
- import mindspore.common.dtype as mstype
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.vision.c_transforms as CV
- import mindspore.nn as nn
- from mindspore import context, Tensor
- from mindspore.ops import operations as P
- from mindspore.nn.probability.dpn import ConditionalVAE
- from mindspore.nn.probability.infer import ELBO, SVI
-
- context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="GPU")
- IMAGE_SHAPE = (-1, 1, 32, 32)
- image_path = os.path.join('/home/workspace/mindspore_dataset/mnist', "train")
-
-
- class Encoder(nn.Cell):
- def __init__(self, num_classes):
- super(Encoder, self).__init__()
- self.fc1 = nn.Dense(1024 + num_classes, 400)
- self.relu = nn.ReLU()
- self.flatten = nn.Flatten()
- self.concat = P.Concat(axis=1)
- self.one_hot = nn.OneHot(depth=num_classes)
-
- def construct(self, x, y):
- x = self.flatten(x)
- y = self.one_hot(y)
- input_x = self.concat((x, y))
- input_x = self.fc1(input_x)
- input_x = self.relu(input_x)
- return input_x
-
-
- class Decoder(nn.Cell):
- def __init__(self):
- super(Decoder, self).__init__()
- self.fc2 = nn.Dense(400, 1024)
- self.sigmoid = nn.Sigmoid()
- self.reshape = P.Reshape()
-
- def construct(self, z):
- z = self.fc2(z)
- z = self.reshape(z, IMAGE_SHAPE)
- z = self.sigmoid(z)
- return z
-
-
- class CVAEWithLossCell(nn.WithLossCell):
- """
- Rewrite WithLossCell for CVAE
- """
- def construct(self, data, label):
- out = self._backbone(data, label)
- return self._loss_fn(out, label)
-
-
- def create_dataset(data_path, batch_size=32, repeat_size=1,
- num_parallel_workers=1):
- """
- create dataset for train or test
- """
- # define dataset
- mnist_ds = ds.MnistDataset(data_path)
-
- resize_height, resize_width = 32, 32
- rescale = 1.0 / 255.0
- shift = 0.0
-
- # define map operations
- resize_op = CV.Resize((resize_height, resize_width)) # Bilinear mode
- rescale_op = CV.Rescale(rescale, shift)
- hwc2chw_op = CV.HWC2CHW()
-
- # apply map operations on images
- mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)
-
- # apply DatasetOps
- mnist_ds = mnist_ds.batch(batch_size)
- mnist_ds = mnist_ds.repeat(repeat_size)
-
- return mnist_ds
-
-
- def test_svi_cave():
- # define the encoder and decoder
- encoder = Encoder(num_classes=10)
- decoder = Decoder()
- # define the cvae model
- cvae = ConditionalVAE(encoder, decoder, hidden_size=400, latent_size=20, num_classes=10)
- # define the loss function
- net_loss = ELBO(latent_prior='Normal', output_prior='Normal')
- # define the optimizer
- optimizer = nn.Adam(params=cvae.trainable_params(), learning_rate=0.001)
- # define the training dataset
- ds_train = create_dataset(image_path, 128, 1)
- # define the WithLossCell modified
- net_with_loss = CVAEWithLossCell(cvae, net_loss)
- # define the variational inference
- vi = SVI(net_with_loss=net_with_loss, optimizer=optimizer)
- # run the vi to return the trained network.
- cvae = vi.run(train_dataset=ds_train, epochs=5)
- # get the trained loss
- trained_loss = vi.get_train_loss()
- # test function: generate_sample
- sample_label = Tensor([i for i in range(0, 8)] * 8, dtype=mstype.int32)
- generated_sample = cvae.generate_sample(sample_label, 64, IMAGE_SHAPE)
- # test function: reconstruct_sample
- for sample in ds_train.create_dict_iterator():
- sample_x = Tensor(sample['image'], dtype=mstype.float32)
- sample_y = Tensor(sample['label'], dtype=mstype.int32)
- reconstructed_sample = cvae.reconstruct_sample(sample_x, sample_y)
- print('The loss of the trained network is ', trained_loss)
- print('The shape of the generated sample is ', generated_sample.shape)
- print('The shape of the reconstructed sample is ', reconstructed_sample.shape)
|