|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test bnn layers"""
-
- import numpy as np
- from mindspore import Tensor
- from mindspore.common.initializer import TruncatedNormal
- import mindspore.nn as nn
- from mindspore.nn import TrainOneStepCell
- from mindspore.nn.probability import bnn_layers
- from mindspore.ops import operations as P
- from mindspore import context
- from dataset import create_dataset
-
- context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="GPU")
-
-
- def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
- """weight initial for conv layer"""
- weight = weight_variable()
- return nn.Conv2d(in_channels, out_channels,
- kernel_size=kernel_size, stride=stride, padding=padding,
- weight_init=weight, has_bias=False, pad_mode="valid")
-
-
- def fc_with_initialize(input_channels, out_channels):
- """weight initial for fc layer"""
- weight = weight_variable()
- bias = weight_variable()
- return nn.Dense(input_channels, out_channels, weight, bias)
-
-
- def weight_variable():
- """weight initial"""
- return TruncatedNormal(0.02)
-
-
- class BNNLeNet5(nn.Cell):
- """
- bayesian Lenet network
-
- Args:
- num_class (int): Num classes. Default: 10.
-
- Returns:
- Tensor, output tensor
- Examples:
- >>> BNNLeNet5(num_class=10)
-
- """
- def __init__(self, num_class=10):
- super(BNNLeNet5, self).__init__()
- self.num_class = num_class
- self.conv1 = bnn_layers.ConvReparam(1, 6, 5, stride=1, padding=0, has_bias=False, pad_mode="valid")
- self.conv2 = conv(6, 16, 5)
- self.fc1 = bnn_layers.DenseReparam(16 * 5 * 5, 120)
- self.fc2 = fc_with_initialize(120, 84)
- self.fc3 = fc_with_initialize(84, self.num_class)
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
- self.flatten = nn.Flatten()
- self.reshape = P.Reshape()
-
- def construct(self, x):
- x = self.conv1(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.conv2(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.flatten(x)
- x = self.fc1(x)
- x = self.relu(x)
- x = self.fc2(x)
- x = self.relu(x)
- x = self.fc3(x)
- return x
-
-
- def train_model(train_net, net, dataset):
- accs = []
- loss_sum = 0
- for _, data in enumerate(dataset.create_dict_iterator()):
- train_x = Tensor(data['image'].astype(np.float32))
- label = Tensor(data['label'].astype(np.int32))
- loss = train_net(train_x, label)
- output = net(train_x)
- log_output = P.LogSoftmax(axis=1)(output)
- acc = np.mean(log_output.asnumpy().argmax(axis=1) == label.asnumpy())
- accs.append(acc)
- loss_sum += loss.asnumpy()
-
- loss_sum = loss_sum / len(accs)
- acc_mean = np.mean(accs)
- return loss_sum, acc_mean
-
-
- def validate_model(net, dataset):
- accs = []
- for _, data in enumerate(dataset.create_dict_iterator()):
- train_x = Tensor(data['image'].astype(np.float32))
- label = Tensor(data['label'].astype(np.int32))
- output = net(train_x)
- log_output = P.LogSoftmax(axis=1)(output)
- acc = np.mean(log_output.asnumpy().argmax(axis=1) == label.asnumpy())
- accs.append(acc)
-
- acc_mean = np.mean(accs)
- return acc_mean
-
-
- if __name__ == "__main__":
- network = BNNLeNet5()
-
- criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
- optimizer = nn.AdamWeightDecay(params=network.trainable_params(), learning_rate=0.0001)
-
- net_with_loss = bnn_layers.WithBNNLossCell(network, criterion, 60000, 0.000001)
- train_bnn_network = TrainOneStepCell(net_with_loss, optimizer)
- train_bnn_network.set_train()
-
- train_set = create_dataset('/home/workspace/mindspore_dataset/mnist_data/train', 64, 1)
- test_set = create_dataset('/home/workspace/mindspore_dataset/mnist_data/test', 64, 1)
-
- epoch = 100
-
- for i in range(epoch):
- train_loss, train_acc = train_model(train_bnn_network, network, train_set)
-
- valid_acc = validate_model(network, test_set)
-
- print('Epoch: {} \tTraining Loss: {:.4f} \tTraining Accuracy: {:.4f} \tvalidation Accuracy: {:.4f}'.format(
- i, train_loss, train_acc, valid_acc))
|