|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Validators for TensorOps.
- """
- import numbers
- from functools import wraps
- import numpy as np
- from mindspore._c_dataengine import TensorOp
-
- from mindspore.dataset.core.validator_helpers import check_value, check_uint8, FLOAT_MAX_INTEGER, check_pos_float32, \
- check_float32, check_2tuple, check_range, check_positive, INT32_MAX, parse_user_args, type_check, type_check_list, \
- check_tensor_op, UINT8_MAX, check_value_normalize_std
- from .utils import Inter, Border, ImageBatchFormat
-
-
- def check_crop_size(size):
- """Wrapper method to check the parameters of crop size."""
- type_check(size, (int, list, tuple), "size")
- if isinstance(size, int):
- check_value(size, (1, FLOAT_MAX_INTEGER))
- elif isinstance(size, (tuple, list)) and len(size) == 2:
- for value in size:
- check_value(value, (1, FLOAT_MAX_INTEGER))
- else:
- raise TypeError("Size should be a single integer or a list/tuple (h, w) of length 2.")
-
-
- def check_cut_mix_batch_c(method):
- """Wrapper method to check the parameters of CutMixBatch."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [image_batch_format, alpha, prob], _ = parse_user_args(method, *args, **kwargs)
- type_check(image_batch_format, (ImageBatchFormat,), "image_batch_format")
- check_pos_float32(alpha)
- check_positive(alpha, "alpha")
- check_value(prob, [0, 1], "prob")
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_resize_size(size):
- """Wrapper method to check the parameters of resize."""
- if isinstance(size, int):
- check_value(size, (1, FLOAT_MAX_INTEGER))
- elif isinstance(size, (tuple, list)) and len(size) == 2:
- for i, value in enumerate(size):
- check_value(value, (1, INT32_MAX), "size at dim {0}".format(i))
- else:
- raise TypeError("Size should be a single integer or a list/tuple (h, w) of length 2.")
-
-
- def check_mix_up_batch_c(method):
- """Wrapper method to check the parameters of MixUpBatch."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [alpha], _ = parse_user_args(method, *args, **kwargs)
- check_positive(alpha, "alpha")
- check_pos_float32(alpha)
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_normalize_c_param(mean, std):
- type_check(mean, (list, tuple), "mean")
- type_check(std, (list, tuple), "std")
- if len(mean) != len(std):
- raise ValueError("Length of mean and std must be equal.")
- for mean_value in mean:
- check_value(mean_value, [0, 255], "mean_value")
- for std_value in std:
- check_value_normalize_std(std_value, [0, 255], "std_value")
-
-
- def check_normalize_py_param(mean, std):
- if len(mean) != len(std):
- raise ValueError("Length of mean and std must be equal.")
- for mean_value in mean:
- check_value(mean_value, [0., 1.], "mean_value")
- for std_value in std:
- check_value_normalize_std(std_value, [0., 1.], "std_value")
-
-
- def check_fill_value(fill_value):
- if isinstance(fill_value, int):
- check_uint8(fill_value)
- elif isinstance(fill_value, tuple) and len(fill_value) == 3:
- for value in fill_value:
- check_uint8(value)
- else:
- raise TypeError("fill_value should be a single integer or a 3-tuple.")
-
-
- def check_padding(padding):
- """Parsing the padding arguments and check if it is legal."""
- type_check(padding, (tuple, list, numbers.Number), "padding")
- if isinstance(padding, numbers.Number):
- check_value(padding, (0, INT32_MAX), "padding")
- if isinstance(padding, (tuple, list)):
- if len(padding) not in (2, 4):
- raise ValueError("The size of the padding list or tuple should be 2 or 4.")
- for i, pad_value in enumerate(padding):
- type_check(pad_value, (int,), "padding[{}]".format(i))
- check_value(pad_value, (0, INT32_MAX), "pad_value")
-
-
- def check_degrees(degrees):
- """Check if the degrees is legal."""
- type_check(degrees, (numbers.Number, list, tuple), "degrees")
- if isinstance(degrees, numbers.Number):
- check_value(degrees, (0, float("inf")), "degrees")
- elif isinstance(degrees, (list, tuple)):
- if len(degrees) == 2:
- type_check_list(degrees, (numbers.Number,), "degrees")
- if degrees[0] > degrees[1]:
- raise ValueError("degrees should be in (min,max) format. Got (max,min).")
- else:
- raise TypeError("If degrees is a sequence, the length must be 2.")
-
-
- def check_random_color_adjust_param(value, input_name, center=1, bound=(0, FLOAT_MAX_INTEGER), non_negative=True):
- """Check the parameters in random color adjust operation."""
- type_check(value, (numbers.Number, list, tuple), input_name)
- if isinstance(value, numbers.Number):
- if value < 0:
- raise ValueError("The input value of {} cannot be negative.".format(input_name))
- elif isinstance(value, (list, tuple)) and len(value) == 2:
- check_range(value, bound)
- if value[0] > value[1]:
- raise ValueError("value should be in (min,max) format. Got (max,min).")
-
-
- def check_erasing_value(value):
- if not (isinstance(value, (numbers.Number, str, bytes)) or
- (isinstance(value, (tuple, list)) and len(value) == 3)):
- raise ValueError("The value for erasing should be either a single value, "
- "or a string 'random', or a sequence of 3 elements for RGB respectively.")
-
-
- def check_crop(method):
- """A wrapper that wraps a parameter checker around the original function(crop operation)."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [size], _ = parse_user_args(method, *args, **kwargs)
- check_crop_size(size)
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_posterize(method):
- """A wrapper that wraps a parameter checker around the original function(posterize operation)."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [bits], _ = parse_user_args(method, *args, **kwargs)
- if bits is not None:
- type_check(bits, (list, tuple, int), "bits")
- if isinstance(bits, int):
- check_value(bits, [1, 8])
- if isinstance(bits, (list, tuple)):
- if len(bits) != 2:
- raise TypeError("Size of bits should be a single integer or a list/tuple (min, max) of length 2.")
- for item in bits:
- check_uint8(item, "bits")
- # also checks if min <= max
- check_range(bits, [1, 8])
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_resize_interpolation(method):
- """A wrapper that wraps a parameter checker around the original function(resize interpolation operation)."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [size, interpolation], _ = parse_user_args(method, *args, **kwargs)
- check_resize_size(size)
- if interpolation is not None:
- type_check(interpolation, (Inter,), "interpolation")
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_resize(method):
- """A wrapper that wraps a parameter checker around the original function(resize operation)."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [size], _ = parse_user_args(method, *args, **kwargs)
- check_resize_size(size)
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_size_scale_ration_max_attempts_paras(size, scale, ratio, max_attempts):
- """Wrapper method to check the parameters of RandomCropDecodeResize and SoftDvppDecodeRandomCropResizeJpeg."""
-
- check_crop_size(size)
- if scale is not None:
- type_check(scale, (tuple,), "scale")
- type_check_list(scale, (float, int), "scale")
- if scale[0] > scale[1]:
- raise ValueError("scale should be in (min,max) format. Got (max,min).")
- check_range(scale, [0, FLOAT_MAX_INTEGER])
- check_positive(scale[1], "scale[1]")
- if ratio is not None:
- type_check(ratio, (tuple,), "ratio")
- type_check_list(ratio, (float, int), "ratio")
- if ratio[0] > ratio[1]:
- raise ValueError("ratio should be in (min,max) format. Got (max,min).")
- check_range(ratio, [0, FLOAT_MAX_INTEGER])
- check_positive(ratio[0], "ratio[0]")
- check_positive(ratio[1], "ratio[1]")
- if max_attempts is not None:
- check_value(max_attempts, (1, FLOAT_MAX_INTEGER))
-
-
- def check_random_resize_crop(method):
- """A wrapper that wraps a parameter checker around the original function(random resize crop operation)."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [size, scale, ratio, interpolation, max_attempts], _ = parse_user_args(method, *args, **kwargs)
- if interpolation is not None:
- type_check(interpolation, (Inter,), "interpolation")
- check_size_scale_ration_max_attempts_paras(size, scale, ratio, max_attempts)
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_prob(method):
- """A wrapper that wraps a parameter checker (to confirm probability) around the original function."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [prob], _ = parse_user_args(method, *args, **kwargs)
- type_check(prob, (float, int,), "prob")
- check_value(prob, [0., 1.], "prob")
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_normalize_c(method):
- """A wrapper that wraps a parameter checker around the original function(normalize operation written in C++)."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [mean, std], _ = parse_user_args(method, *args, **kwargs)
- check_normalize_c_param(mean, std)
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_normalize_py(method):
- """A wrapper that wraps a parameter checker around the original function(normalize operation written in Python)."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [mean, std], _ = parse_user_args(method, *args, **kwargs)
- check_normalize_py_param(mean, std)
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_random_crop(method):
- """Wrapper method to check the parameters of random crop."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [size, padding, pad_if_needed, fill_value, padding_mode], _ = parse_user_args(method, *args, **kwargs)
- check_crop_size(size)
- type_check(pad_if_needed, (bool,), "pad_if_needed")
- if padding is not None:
- check_padding(padding)
- if fill_value is not None:
- check_fill_value(fill_value)
- if padding_mode is not None:
- type_check(padding_mode, (Border,), "padding_mode")
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_random_color_adjust(method):
- """Wrapper method to check the parameters of random color adjust."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [brightness, contrast, saturation, hue], _ = parse_user_args(method, *args, **kwargs)
- check_random_color_adjust_param(brightness, "brightness")
- check_random_color_adjust_param(contrast, "contrast")
- check_random_color_adjust_param(saturation, "saturation")
- check_random_color_adjust_param(hue, 'hue', center=0, bound=(-0.5, 0.5), non_negative=False)
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_random_rotation(method):
- """Wrapper method to check the parameters of random rotation."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [degrees, resample, expand, center, fill_value], _ = parse_user_args(method, *args, **kwargs)
- check_degrees(degrees)
-
- if resample is not None:
- type_check(resample, (Inter,), "resample")
- if expand is not None:
- type_check(expand, (bool,), "expand")
- if center is not None:
- check_2tuple(center, "center")
- if fill_value is not None:
- check_fill_value(fill_value)
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_ten_crop(method):
- """Wrapper method to check the parameters of crop."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [size, use_vertical_flip], _ = parse_user_args(method, *args, **kwargs)
- check_crop_size(size)
-
- if use_vertical_flip is not None:
- type_check(use_vertical_flip, (bool,), "use_vertical_flip")
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_num_channels(method):
- """Wrapper method to check the parameters of number of channels."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [num_output_channels], _ = parse_user_args(method, *args, **kwargs)
- if num_output_channels is not None:
- if num_output_channels not in (1, 3):
- raise ValueError("Number of channels of the output grayscale image"
- "should be either 1 or 3. Got {0}.".format(num_output_channels))
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_pad(method):
- """Wrapper method to check the parameters of random pad."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [padding, fill_value, padding_mode], _ = parse_user_args(method, *args, **kwargs)
- check_padding(padding)
- check_fill_value(fill_value)
- type_check(padding_mode, (Border,), "padding_mode")
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_random_perspective(method):
- """Wrapper method to check the parameters of random perspective."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [distortion_scale, prob, interpolation], _ = parse_user_args(method, *args, **kwargs)
-
- check_value(distortion_scale, [0., 1.], "distortion_scale")
- check_value(prob, [0., 1.], "prob")
- type_check(interpolation, (Inter,), "interpolation")
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_mix_up(method):
- """Wrapper method to check the parameters of mix up."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [batch_size, alpha, is_single], _ = parse_user_args(method, *args, **kwargs)
-
- check_value(batch_size, (1, FLOAT_MAX_INTEGER))
- check_positive(alpha, "alpha")
- type_check(is_single, (bool,), "is_single")
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_random_erasing(method):
- """Wrapper method to check the parameters of random erasing."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [prob, scale, ratio, value, inplace, max_attempts], _ = parse_user_args(method, *args, **kwargs)
-
- check_value(prob, [0., 1.], "prob")
- if scale[0] > scale[1]:
- raise ValueError("scale should be in (min,max) format. Got (max,min).")
- check_range(scale, [0, FLOAT_MAX_INTEGER])
- check_positive(scale[1], "scale[1]")
- if ratio[0] > ratio[1]:
- raise ValueError("ratio should be in (min,max) format. Got (max,min).")
- check_range(ratio, [0, FLOAT_MAX_INTEGER])
- check_positive(ratio[0], "ratio[0]")
- check_positive(ratio[1], "ratio[1]")
- check_erasing_value(value)
- type_check(inplace, (bool,), "inplace")
- check_value(max_attempts, (1, FLOAT_MAX_INTEGER))
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_cutout(method):
- """Wrapper method to check the parameters of cutout operation."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [length, num_patches], _ = parse_user_args(method, *args, **kwargs)
-
- check_value(length, (1, FLOAT_MAX_INTEGER))
- check_value(num_patches, (1, FLOAT_MAX_INTEGER))
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_linear_transform(method):
- """Wrapper method to check the parameters of linear transform."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [transformation_matrix, mean_vector], _ = parse_user_args(method, *args, **kwargs)
- type_check(transformation_matrix, (np.ndarray,), "transformation_matrix")
- type_check(mean_vector, (np.ndarray,), "mean_vector")
-
- if transformation_matrix.shape[0] != transformation_matrix.shape[1]:
- raise ValueError("transformation_matrix should be a square matrix. "
- "Got shape {} instead.".format(transformation_matrix.shape))
- if mean_vector.shape[0] != transformation_matrix.shape[0]:
- raise ValueError("mean_vector length {0} should match either one dimension of the square"
- "transformation_matrix {1}.".format(mean_vector.shape[0], transformation_matrix.shape))
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_random_affine(method):
- """Wrapper method to check the parameters of random affine."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [degrees, translate, scale, shear, resample, fill_value], _ = parse_user_args(method, *args, **kwargs)
- check_degrees(degrees)
-
- if translate is not None:
- type_check(translate, (list, tuple), "translate")
- type_check_list(translate, (int, float), "translate")
- if len(translate) != 2 and len(translate) != 4:
- raise TypeError("translate should be a list or tuple of length 2 or 4.")
- for i, t in enumerate(translate):
- check_value(t, [-1.0, 1.0], "translate at {0}".format(i))
-
- if scale is not None:
- type_check(scale, (tuple, list), "scale")
- type_check_list(scale, (int, float), "scale")
- if len(scale) == 2:
- if scale[0] > scale[1]:
- raise ValueError("Input scale[1] must be equal to or greater than scale[0].")
- check_range(scale, [0, FLOAT_MAX_INTEGER])
- check_positive(scale[1], "scale[1]")
- else:
- raise TypeError("scale should be a list or tuple of length 2.")
-
- if shear is not None:
- type_check(shear, (numbers.Number, tuple, list), "shear")
- if isinstance(shear, numbers.Number):
- check_positive(shear, "shear")
- else:
- type_check_list(shear, (int, float), "shear")
- if len(shear) not in (2, 4):
- raise TypeError("shear must be of length 2 or 4.")
- if len(shear) == 2 and shear[0] > shear[1]:
- raise ValueError("Input shear[1] must be equal to or greater than shear[0]")
- if len(shear) == 4 and (shear[0] > shear[1] or shear[2] > shear[3]):
- raise ValueError("Input shear[1] must be equal to or greater than shear[0] and "
- "shear[3] must be equal to or greater than shear[2].")
-
- type_check(resample, (Inter,), "resample")
-
- if fill_value is not None:
- check_fill_value(fill_value)
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_rescale(method):
- """Wrapper method to check the parameters of rescale."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [rescale, shift], _ = parse_user_args(method, *args, **kwargs)
- type_check(rescale, (numbers.Number,), "rescale")
- type_check(shift, (numbers.Number,), "shift")
- check_float32(rescale)
- check_float32(shift)
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_uniform_augment_cpp(method):
- """Wrapper method to check the parameters of UniformAugment C++ op."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [transforms, num_ops], _ = parse_user_args(method, *args, **kwargs)
- type_check(num_ops, (int,), "num_ops")
- check_positive(num_ops, "num_ops")
-
- if num_ops > len(transforms):
- raise ValueError("num_ops is greater than transforms list size.")
- type_check_list(transforms, (TensorOp,), "tensor_ops")
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_bounding_box_augment_cpp(method):
- """Wrapper method to check the parameters of BoundingBoxAugment C++ op."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [transform, ratio], _ = parse_user_args(method, *args, **kwargs)
- type_check(ratio, (float, int), "ratio")
- check_value(ratio, [0., 1.], "ratio")
- type_check(transform, (TensorOp,), "transform")
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_auto_contrast(method):
- """Wrapper method to check the parameters of AutoContrast ops (Python and C++)."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [cutoff, ignore], _ = parse_user_args(method, *args, **kwargs)
- type_check(cutoff, (int, float), "cutoff")
- check_value(cutoff, [0, 100], "cutoff")
- if ignore is not None:
- type_check(ignore, (list, tuple, int), "ignore")
- if isinstance(ignore, int):
- check_value(ignore, [0, 255], "ignore")
- if isinstance(ignore, (list, tuple)):
- for item in ignore:
- type_check(item, (int,), "item")
- check_value(item, [0, 255], "ignore")
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_uniform_augment_py(method):
- """Wrapper method to check the parameters of Python UniformAugment op."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [transforms, num_ops], _ = parse_user_args(method, *args, **kwargs)
- type_check(transforms, (list,), "transforms")
-
- if not transforms:
- raise ValueError("transforms list is empty.")
-
- for transform in transforms:
- if isinstance(transform, TensorOp):
- raise ValueError("transform list only accepts Python operations.")
-
- type_check(num_ops, (int,), "num_ops")
- check_positive(num_ops, "num_ops")
- if num_ops > len(transforms):
- raise ValueError("num_ops cannot be greater than the length of transforms list.")
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_positive_degrees(method):
- """A wrapper method to check degrees parameter in RandomSharpness and RandomColor ops (Python and C++)"""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [degrees], _ = parse_user_args(method, *args, **kwargs)
-
- if degrees is not None:
- if not isinstance(degrees, (list, tuple)):
- raise TypeError("degrees must be either a tuple or a list.")
- type_check_list(degrees, (int, float), "degrees")
- if len(degrees) != 2:
- raise ValueError("degrees must be a sequence with length 2.")
- for degree in degrees:
- check_value(degree, (0, FLOAT_MAX_INTEGER))
- if degrees[0] > degrees[1]:
- raise ValueError("degrees should be in (min,max) format. Got (max,min).")
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_random_select_subpolicy_op(method):
- """Wrapper method to check the parameters of RandomSelectSubpolicyOp."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [policy], _ = parse_user_args(method, *args, **kwargs)
- type_check(policy, (list,), "policy")
- if not policy:
- raise ValueError("policy can not be empty.")
- for sub_ind, sub in enumerate(policy):
- type_check(sub, (list,), "policy[{0}]".format([sub_ind]))
- if not sub:
- raise ValueError("policy[{0}] can not be empty.".format(sub_ind))
- for op_ind, tp in enumerate(sub):
- check_2tuple(tp, "policy[{0}][{1}]".format(sub_ind, op_ind))
- check_tensor_op(tp[0], "op of (op, prob) in policy[{0}][{1}]".format(sub_ind, op_ind))
- check_value(tp[1], (0, 1), "prob of (op, prob) policy[{0}][{1}]".format(sub_ind, op_ind))
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_soft_dvpp_decode_random_crop_resize_jpeg(method):
- """Wrapper method to check the parameters of SoftDvppDecodeRandomCropResizeJpeg."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [size, scale, ratio, max_attempts], _ = parse_user_args(method, *args, **kwargs)
- check_size_scale_ration_max_attempts_paras(size, scale, ratio, max_attempts)
-
- return method(self, *args, **kwargs)
-
- return new_method
-
-
- def check_random_solarize(method):
- """Wrapper method to check the parameters of RandomSolarizeOp."""
-
- @wraps(method)
- def new_method(self, *args, **kwargs):
- [threshold], _ = parse_user_args(method, *args, **kwargs)
-
- type_check(threshold, (tuple,), "threshold")
- type_check_list(threshold, (int,), "threshold")
- if len(threshold) != 2:
- raise ValueError("threshold must be a sequence of two numbers.")
- for element in threshold:
- check_value(element, (0, UINT8_MAX))
- if threshold[1] < threshold[0]:
- raise ValueError("threshold must be in min max format numbers.")
-
- return method(self, *args, **kwargs)
-
- return new_method
|