|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- train step wrap
- """
- import mindspore.nn as nn
- from mindspore.ops import functional as F
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- from mindspore import Parameter, ParameterTuple
-
-
- run_opt = C.MultitypeFuncGraph("run_opt")
-
- # pylint: disable=unused-argument
- @run_opt.register("Function", "Int", "Number", "Number",
- "Tensor", "Tensor", "Tensor")
- def tensor_run_opt(opt, iterator, learning_rate, momentum,
- gradient, variable, moment):
- success = True
- new_weight = opt(gradient, moment, variable, learning_rate, momentum)
- success = F.depend(success, P.Assign()(variable, new_weight))
- return success
-
-
- class OptimizerByMomentum(nn.Cell):
- """
- OptimizerByMomentum definition
- """
- # list of tensor
- def __init__(self, weights):
- super(OptimizerByMomentum, self).__init__()
- self.learning_rate = Parameter(0.1, name="learning_rate")
- self.momentum = Parameter(0.05, name="momentum")
- self.iter = Parameter(0, name="iter")
-
- self.weights = weights
- self.moments = weights.clone(prefix="moments", init='zeros')
-
- self.hyper_map = C.HyperMap()
- self.opt = P.ApplyMomentum()
-
- def construct(self, grads):
- success = True
- weights = self.weights
- moments = self.moments
- success = self.hyper_map(
- F.partial(run_opt, self.opt, self.iter,
- self.learning_rate, self.momentum), grads, weights, moments)
- # self.learning_rate = updata_lr(self.learning_rate, self.momentum)
- return success
-
- class TrainStepWrap(nn.Cell):
- """
- TrainStepWrap definition
- """
- def __init__(self, network):
- super(TrainStepWrap, self).__init__()
- self.network = network
- self.network.set_train()
- self.weights = ParameterTuple(network.trainable_params())
- self.optimizer = OptimizerByMomentum(self.weights)
- self.hyper_map = C.HyperMap()
- self.grad = C.GradOperation('grad', get_by_list=True)
-
- def construct(self, x, label):
- weights = self.weights
- grads = self.grad(self.network, weights)(x, label)
- return self.optimizer(grads)
-
- class NetWithLossClass(nn.Cell):
- """
- NetWithLossClass definition
- """
- def __init__(self, network):
- super(NetWithLossClass, self).__init__(auto_prefix=False)
- self.loss = nn.SoftmaxCrossEntropyWithLogits()
- self.network = network
-
- def construct(self, x, label):
- predict = self.network(x)
- return self.loss(predict, label)
-
-
- def train_step_with_loss_warp(network):
- return TrainStepWrap(NetWithLossClass(network))
-
-
- class TrainStepWrap2(nn.Cell):
- """
- TrainStepWrap2 definition
- """
- def __init__(self, network, sens):
- super(TrainStepWrap2, self).__init__()
- self.network = network
- self.network.set_train()
- self.weights = ParameterTuple(network.get_parameters())
- self.optimizer = OptimizerByMomentum(self.weights)
- self.hyper_map = C.HyperMap()
- self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True)
- self.sens = sens
-
- def construct(self, x):
- weights = self.weights
- grads = self.grad(self.network, weights)(x, self.sens)
- return self.optimizer(grads)
-
- def train_step_with_sens(network, sens):
- return TrainStepWrap2(network, sens)
-
- class TrainStepWrapWithoutOpt(nn.Cell):
- """
- TrainStepWrapWithoutOpt definition
- """
- def __init__(self, network):
- super(TrainStepWrapWithoutOpt, self).__init__()
- self.network = network
- self.weights = ParameterTuple(network.trainable_params())
- self.grad = C.GradOperation('grad', get_by_list=True)
-
- def construct(self, x, label):
- grads = self.grad(self.network, self.weights)(x, label)
- return grads
-
- def train_step_without_opt(network):
- return TrainStepWrapWithoutOpt(NetWithLossClass(network))
|