|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """model train script"""
- import os
- import shutil
- import numpy as np
-
- import mindspore.nn as nn
- import mindspore.context as context
- from mindspore import Tensor
- from mindspore.train import Model
- from mindspore.nn.metrics import Accuracy
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore.common import set_seed
-
- from src.config import textrcnn_cfg as cfg
- from src.dataset import create_dataset
- from src.dataset import convert_to_mindrecord
- from src.textrcnn import textrcnn
- from src.utils import get_lr
-
- set_seed(0)
-
- if __name__ == '__main__':
-
- context.set_context(
- mode=context.GRAPH_MODE,
- save_graphs=False,
- device_target="Ascend")
-
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(device_id=device_id)
-
- if cfg.preprocess == 'true':
- print("============== Starting Data Pre-processing ==============")
- if os.path.exists(cfg.preprocess_path):
- shutil.rmtree(cfg.preprocess_path)
- os.mkdir(cfg.preprocess_path)
- convert_to_mindrecord(cfg.embed_size, cfg.data_path, cfg.preprocess_path, cfg.emb_path)
-
- if cfg.cell == "vanilla":
- print("============ Precision is lower than expected when using vanilla RNN architecture ===========")
-
- embedding_table = np.loadtxt(os.path.join(cfg.preprocess_path, "weight.txt")).astype(np.float32)
-
- network = textrcnn(weight=Tensor(embedding_table), vocab_size=embedding_table.shape[0],
- cell=cfg.cell, batch_size=cfg.batch_size)
-
- ds_train = create_dataset(cfg.preprocess_path, cfg.batch_size, True)
- step_size = ds_train.get_dataset_size()
-
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
- lr = get_lr(cfg, step_size)
- num_epochs = cfg.num_epochs
- if cfg.cell == "lstm":
- num_epochs = cfg.lstm_num_epochs
-
- opt = nn.Adam(params=network.trainable_params(), learning_rate=lr)
-
- loss_cb = LossMonitor()
- time_cb = TimeMonitor()
- model = Model(network, loss, opt, {'acc': Accuracy()}, amp_level="O3")
-
- print("============== Starting Training ==============")
- config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
- keep_checkpoint_max=cfg.keep_checkpoint_max)
- ckpoint_cb = ModelCheckpoint(prefix=cfg.cell, directory=cfg.ckpt_folder_path, config=config_ck)
- model.train(num_epochs, ds_train, callbacks=[ckpoint_cb, loss_cb, time_cb])
- print("train success")
|