|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Convert ckpt to air."""
- import os
- import argparse
- import numpy as np
-
- from mindspore import context
- from mindspore import Tensor
- from mindspore.train.serialization import export, load_checkpoint, load_param_into_net
-
- from src.backbone.resnet import get_backbone
-
- devid = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=devid)
-
-
- def main(args):
- network = get_backbone(args)
-
- ckpt_path = args.pretrained
- if os.path.isfile(ckpt_path):
- param_dict = load_checkpoint(ckpt_path)
- param_dict_new = {}
- for key, values in param_dict.items():
- if key.startswith('moments.'):
- continue
- elif key.startswith('network.'):
- param_dict_new[key[8:]] = values
- else:
- param_dict_new[key] = values
- load_param_into_net(network, param_dict_new)
- print('-----------------------load model success-----------------------')
- else:
- print('-----------------------load model failed -----------------------')
-
- network.add_flags_recursive(fp16=True)
- network.set_train(False)
-
- input_data = np.random.uniform(low=0, high=1.0, size=(args.batch_size, 3, 112, 112)).astype(np.float32)
- tensor_input_data = Tensor(input_data)
-
- file_path = ckpt_path.replace('.ckpt', '_' + str(args.batch_size) + 'b.air')
- export(network, tensor_input_data, file_name=file_path, file_format='AIR')
- print('-----------------------export model success, save file:{}-----------------------'.format(file_path))
-
-
- def parse_args():
- '''parse_args'''
- parser = argparse.ArgumentParser(description='Convert ckpt to air')
- parser.add_argument('--pretrained', type=str, default='', help='pretrained model to load')
- parser.add_argument('--batch_size', type=int, default=16, help='batch size')
- parser.add_argument('--pre_bn', type=int, default=0, help='1: bn-conv-bn-conv-bn, 0: conv-bn-conv-bn')
- parser.add_argument('--inference', type=int, default=1, help='use inference backbone')
- parser.add_argument('--use_se', type=int, default=0, help='use se block or not')
- parser.add_argument('--emb_size', type=int, default=256, help='embedding size of the network')
- parser.add_argument('--act_type', type=str, default='relu', help='activation layer type')
- parser.add_argument('--backbone', type=str, default='r100', help='backbone network')
- parser.add_argument('--head', type=str, default='0', help='head type, default is 0')
- parser.add_argument('--use_drop', type=int, default=0, help='whether use dropout in network')
-
- args = parser.parse_args()
-
- return args
-
- if __name__ == "__main__":
-
- arg = parse_args()
- main(arg)
|