|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """lamb"""
- import numpy as np
- from mindspore import context
- from mindspore.common import dtype as mstype
- from mindspore.common.initializer import initializer
- from mindspore.ops import operations as P
- from mindspore.ops import composite as C
- from mindspore.ops import functional as F
- from mindspore.common.parameter import Parameter
- from mindspore.common.tensor import Tensor
- from mindspore._checkparam import Validator as validator
- from mindspore._checkparam import Rel
- from .optimizer import Optimizer
- from .. import layer
- from .. import _graph_kernels as G
-
- num_one = Tensor(np.ones([1]), mstype.float32)
-
- _lamb_opt = C.MultitypeFuncGraph("lamb_opt")
-
- @_lamb_opt.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Number", "Tensor", "Tensor", "Tensor",
- "Tensor", "Bool", "Bool")
- def _update_run_op(beta1, beta2, eps, global_step, lr, weight_decay, param, m, v, gradient, decay_flag, optim_filter):
- """
- Update parameters.
-
- Args:
- beta1 (Tensor): The exponential decay rate for the 1st moment estimations. Should be in range (0.0, 1.0).
- beta2 (Tensor): The exponential decay rate for the 2nd moment estimations. Should be in range (0.0, 1.0).
- eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
- lr (Tensor): Learning rate.
- weight_decay (Number): Weight decay. Should be equal to or greater than 0.
- global_step (Tensor): Global step.
- param (Tensor): Parameters.
- m (Tensor): m value of parameters.
- v (Tensor): v value of parameters.
- gradient (Tensor): Gradient of parameters.
- decay_flag (bool): Specifies whether param update with weight decay.
- optim_filter(bool): Applies parameter update or not.
-
- Returns:
- Tensor, the new value of v after updating.
- """
- if optim_filter:
- op_mul = P.Mul()
- op_sqrt = P.Sqrt()
- op_rsqrt = P.Rsqrt()
- op_square = P.Square()
- op_cast = P.Cast()
- op_reshape = P.Reshape()
- op_shape = P.Shape()
- op_pow = P.Pow()
- op_norm = layer.Norm()
- op_select = P.Select()
- op_greater = P.Greater()
- op_fill = P.Fill()
- op_dtype = P.DType()
-
- param_fp32 = op_cast(param, mstype.float32)
- m_fp32 = op_cast(m, mstype.float32)
- v_fp32 = op_cast(v, mstype.float32)
- gradient_fp32 = op_cast(gradient, mstype.float32)
-
- next_m = op_mul(beta1, m_fp32) + op_mul(op_cast(num_one, mstype.float32) - beta1, gradient_fp32)
-
- next_v = op_mul(beta2, v_fp32) + op_mul(op_cast(num_one, mstype.float32) - beta2, op_square(gradient_fp32))
-
- next_mm = next_m / (op_cast(num_one, mstype.float32)
- - op_pow(beta1, op_cast(global_step + num_one, mstype.float32)))
- next_vv = next_v / (op_cast(num_one, mstype.float32) -
- op_pow(beta2, op_cast(global_step + num_one, mstype.float32)))
- w_norm = op_norm(param_fp32)
- g_norm = op_norm(gradient_fp32)
-
- g_norm_hat = op_norm(op_mul(next_mm, op_rsqrt(next_vv + eps)) + weight_decay * param_fp32)
- zeros = F.zeros_like(w_norm)
- ones = op_fill(op_dtype(w_norm), op_shape(w_norm), 1.0)
- trust_ratio = op_select(
- op_greater(w_norm, zeros),
- op_select(op_greater(g_norm, zeros), w_norm / g_norm_hat, ones),
- ones)
- tens = op_fill(op_dtype(trust_ratio), op_shape(trust_ratio), 10.0)
- trust_ratio = C.clip_by_value(trust_ratio, zeros, tens)
- update = next_mm / (op_sqrt(next_vv) + eps)
-
- if decay_flag:
- update = update + op_mul(weight_decay, param_fp32)
-
- update_with_lr = op_mul(op_mul(trust_ratio, lr), update)
-
- next_param = param_fp32 - op_reshape(update_with_lr, op_shape(param_fp32))
-
- next_param = F.depend(next_param, F.assign(param, op_cast(next_param, F.dtype(param))))
- next_param = F.depend(next_param, F.assign(m, op_cast(next_m, F.dtype(m))))
- next_param = F.depend(next_param, F.assign(v, op_cast(next_v, F.dtype(v))))
-
- return op_cast(next_param, F.dtype(param))
- return gradient
-
-
- lamb_opt_graph_kernel = C.MultitypeFuncGraph("lamb_opt_graph_kernel")
-
-
- @lamb_opt_graph_kernel.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Number",
- "Tensor", "Tensor", "Tensor", "Tensor", "Bool")
- def _update_run_op_graph_kernel(beta1, beta2, eps, global_step, lr, weight_decay, param, m, v, gradient, decay_flag):
- """
- Update parameters.
-
- Args:
- beta1 (Tensor): The exponential decay rate for the 1st moment estimations. Should be in range (0.0, 1.0).
- beta2 (Tensor): The exponential decay rate for the 2nd moment estimations. Should be in range (0.0, 1.0).
- eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
- lr (Tensor): Learning rate.
- weight_decay (Number): Weight decay. Should be equal to or greater than 0.
- global_step (Tensor): Global step.
- param (Tensor): Parameters.
- m (Tensor): m value of parameters.
- v (Tensor): v value of parameters.
- gradient (Tensor): Gradient of parameters.
- decay_flag (bool): Specifies whether param update with weight decay.
-
- Returns:
- Tensor, the new value of v after updating.
- """
- op_mul = P.Mul()
- op_square = P.Square()
- op_cast = P.Cast()
- op_shape = P.Shape()
- op_pow = P.Pow()
- op_norm = layer.Norm()
- op_fill = P.Fill()
- op_dtype = P.DType()
-
- param_fp32 = op_cast(param, mstype.float32)
- gradient_fp32 = op_cast(gradient, mstype.float32)
-
- i6_ex = op_cast(global_step + num_one, mstype.float32)
- i9 = op_cast(num_one, mstype.float32) - beta1
- x1 = op_cast(num_one, mstype.float32) - beta2
- i6 = op_cast(num_one, mstype.float32) - op_pow(beta1, i6_ex)
- i3 = op_cast(num_one, mstype.float32) - op_pow(beta2, i6_ex)
- i1 = op_square(gradient_fp32)
- add3, update = G.LambNextMV()(i1, v, i3, gradient, m, i6, param, beta1, i9, beta2, x1, weight_decay, eps)
-
- if decay_flag:
- update = update + op_mul(weight_decay, param_fp32)
-
- w_norm = op_norm(param_fp32)
- g_norm = op_norm(gradient_fp32)
- g_norm_hat = op_norm(add3)
-
- zeros = F.zeros_like(w_norm)
- ones = op_fill(op_dtype(w_norm), op_shape(w_norm), 1.0)
- tens = op_fill(op_dtype(w_norm), op_shape(w_norm), 10.0)
-
- next_param = G.LambUpdateWithLR()(g_norm, w_norm, g_norm_hat, lr, update, param, zeros, ones, tens)
- next_v = F.control_depend(add3, next_param)
- return next_v
-
-
- def _check_param_value(beta1, beta2, eps, prim_name):
- validator.check_value_type("beta1", beta1, [float], prim_name)
- validator.check_value_type("beta2", beta2, [float], prim_name)
- validator.check_value_type("eps", eps, [float], prim_name)
- validator.check_float_range(beta1, 0.0, 1.0, Rel.INC_NEITHER, "beta1", prim_name)
- validator.check_float_range(beta2, 0.0, 1.0, Rel.INC_NEITHER, "beta2", prim_name)
- validator.check_positive_float(eps, "eps", prim_name)
-
-
- class Lamb(Optimizer):
- """
- Lamb Dynamic Learning Rate.
-
- LAMB is an optimization algorithm employing a layerwise adaptive large batch
- optimization technique. Refer to the paper `LARGE BATCH OPTIMIZATION FOR DEEP LEARNING: TRAINING BERT IN 76
- MINUTES <https://arxiv.org/abs/1904.00962>`_.
-
- Note:
- When separating parameter groups, the weight decay in each group will be applied on the parameters if the
- weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
- on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
-
- To improve parameter groups performance, the customized order of parameters can be supported.
-
- Args:
- params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
- the element in `params` must be class `Parameter`. When the `params` is a list of `dict`, the "params",
- "lr", "weight_decay" and "order_params" are the keys can be parsed.
-
- - params: Required. The value must be a list of `Parameter`.
-
- - lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
- If not, the `learning_rate` in the API will be used.
-
- - weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
- will be used. If not, the `weight_decay` in the API will be used.
-
- - order_params: Optional. If "order_params" in the keys, the value must be the order of parameters and
- the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
- in the value of 'order_params' must be in one of group parameters.
-
- learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or a graph for the learning rate.
- When the learning_rate is an Iterable or a Tensor in a 1D dimension, use dynamic learning rate, then
- the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
- use dynamic learning rate, the i-th learning rate will be calculated during the process of training
- according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor in a zero
- dimension, use fixed learning rate. Other cases are not supported. The float learning rate must be
- equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
- beta1 (float): The exponential decay rate for the 1st moment estimations. Default: 0.9.
- Should be in range (0.0, 1.0).
- beta2 (float): The exponential decay rate for the 2nd moment estimations. Default: 0.999.
- Should be in range (0.0, 1.0).
- eps (float): Term added to the denominator to improve numerical stability. Default: 1e-6.
- Should be greater than 0.
- weight_decay (float): Weight decay (L2 penalty). Default: 0.0. Should be equal to or greater than 0.
-
- Inputs:
- - **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
-
- Outputs:
- tuple[bool], all elements are True.
-
- Supported Platforms:
- ``Ascend`` ``GPU``
-
- Examples:
- >>> net = Net()
- >>> #1) All parameters use the same learning rate and weight decay
- >>> optim = nn.Lamb(params=net.trainable_params(), learning_rate=0.1)
- >>>
- >>> #2) Use parameter groups and set different values
- >>> poly_decay_lr = learning_rate_schedule.PolynomialDecayLR(learning_rate=0.1, end_learning_rate=0.01,
- ... decay_steps=4, power = 0.5)
- >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
- >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
- >>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
- ... {'params': no_conv_params, 'lr': poly_decay_lr},
- ... {'order_params': net.trainable_params(0.01)}]
- >>> optim = nn.Lamb(group_params, learning_rate=0.1, weight_decay=0.0)
- >>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
- >>> # The no_conv_params's parameters will use dynamic learning rate of poly decay learning rate and default
- >>> # weight decay of 0.0.
- >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
- >>>
- >>> loss = nn.SoftmaxCrossEntropyWithLogits()
- >>> model = Model(net, loss_fn=loss, optimizer=optim)
- """
-
- def __init__(self, params, learning_rate, beta1=0.9, beta2=0.999, eps=1e-6, weight_decay=0.0):
- super(Lamb, self).__init__(learning_rate, params, weight_decay)
- _check_param_value(beta1, beta2, eps, self.cls_name)
-
- # turn them to scalar when me support scalar/tensor mix operations
- self.beta1 = Tensor(np.array([beta1]).astype(np.float32))
- self.beta2 = Tensor(np.array([beta2]).astype(np.float32))
- self.eps = Tensor(np.array([eps]).astype(np.float32))
- self.params = self.parameters
- self.moments1 = self.params.clone(prefix="lamb_m", init='zeros')
- self.moments2 = self.params.clone(prefix="lamb_v", init='zeros')
-
- if not self.dynamic_lr:
- self.global_step = Parameter(initializer(0, [1]), name='global_step')
- self.assignadd = P.AssignAdd()
- self.hyper_map = C.HyperMap()
- self.enable_graph_kernel = context.get_context("device_target") == "Ascend" and \
- context.get_context("enable_graph_kernel")
-
- def construct(self, gradients):
- lr = self.get_lr()
- if self.enable_graph_kernel:
- if self.is_group:
- if self.is_group_lr:
- optim_result = self.hyper_map(F.partial(lamb_opt_graph_kernel, self.beta1, self.beta2, self.eps,
- self.global_step),
- lr, self.weight_decay, self.params, self.moments1, self.moments2,
- gradients, self.decay_flags)
- else:
- optim_result = self.hyper_map(F.partial(lamb_opt_graph_kernel, self.beta1, self.beta2, self.eps,
- self.global_step, lr),
- self.weight_decay, self.params, self.moments1, self.moments2,
- gradients, self.decay_flags)
- else:
- optim_result = self.hyper_map(F.partial(lamb_opt_graph_kernel, self.beta1, self.beta2, self.eps,
- self.global_step, lr, self.weight_decay),
- self.params, self.moments1, self.moments2, gradients, self.decay_flags)
- else:
- if self.is_group:
- if self.is_group_lr:
- optim_result = self.hyper_map(F.partial(_lamb_opt, self.beta1, self.beta2, self.eps,
- self.global_step),
- lr, self.weight_decay, self.params, self.moments1, self.moments2,
- gradients, self.decay_flags, self.optim_filter)
- else:
- optim_result = self.hyper_map(F.partial(_lamb_opt, self.beta1, self.beta2, self.eps,
- self.global_step, lr),
- self.weight_decay, self.params, self.moments1, self.moments2,
- gradients, self.decay_flags, self.optim_filter)
- else:
- optim_result = self.hyper_map(F.partial(_lamb_opt, self.beta1, self.beta2, self.eps,
- self.global_step, lr, self.weight_decay),
- self.params, self.moments1, self.moments2, gradients,
- self.decay_flags, self.optim_filter)
-
- if self.use_parallel:
- self.broadcast_params(optim_result)
-
- if not self.dynamic_lr:
- F.control_depend(lr, self.assignadd(self.global_step, 1))
-
- return optim_result
|