|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """optimizer"""
- from typing import Iterable
-
- import numpy as np
-
- import mindspore
- from mindspore.ops import functional as F, composite as C, operations as P
- from mindspore.ops.operations import _inner_ops as inner
- from mindspore.nn.cell import Cell
- from mindspore.nn.layer.container import CellList
- from mindspore.common.parameter import Parameter, ParameterTuple
- from mindspore.common.initializer import initializer
- from mindspore.common.tensor import Tensor, RowTensor
- import mindspore.common.dtype as mstype
- from mindspore._checkparam import Validator as validator
- from mindspore import log as logger
- from mindspore.parallel._utils import _get_global_rank, _get_device_num, _get_parallel_mode
- from mindspore.context import ParallelMode
- from mindspore import context
- from mindspore.nn.learning_rate_schedule import LearningRateSchedule
-
- __all__ = ['Optimizer']
-
-
- class Optimizer(Cell):
- """
- Base class for all optimizers.
-
- Note:
- This class defines the API to add Ops to train a model. Never use
- this class directly, but instead instantiate one of its subclasses.
-
- Different parameter groups can set different `learning_rate`, `weight_decay` and `grad_centralization`.
-
- When separating parameter groups, the weight decay in each group will be applied on the parameters if the
- weight_decay is positive. For most optimizer, when not separating parameters, the `weight_decay` in the API will
- be applied on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
-
- When separating parameter groups, if you want to centralize the gradient, set grad_centralization to True,
- but the gradient centralization can only be applied to the parameters of the convolution layer.
- If the parameters of the non convolution layer are set to True, an error will be reported.
-
- To improve parameter groups performance, the customized order of parameters can be supported.
-
- Args:
- learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or a graph for the learning
- rate. When the learning_rate is an Iterable or a Tensor in a 1D dimension, use dynamic learning rate, then
- the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
- use dynamic learning rate, the i-th learning rate will be calculated during the process of training
- according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor in a zero
- dimension, use fixed learning rate. Other cases are not supported. The float learning rate must be
- equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
- parameters (Union[list[Parameter], list[dict]]): When the `parameters` is a list of `Parameter` which will be
- updated, the element in `parameters` must be class `Parameter`. When the `parameters` is a list of `dict`,
- the "params", "lr", "weight_decay" and "order_params" are the keys can be parsed.
-
- - params: Required. The value must be a list of `Parameter`.
-
- - lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
- If not, the `learning_rate` in the API will be used.
-
- - weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
- will be used. If not, the `weight_decay` in the API will be used.
-
- - order_params: Optional. If "order_params" in the keys, the value must be the order of parameters and
- the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
- in the value of 'order_params' must be in one of group parameters.
-
- - grad_centralization: Optional. The data type of "grad_centralization" is Bool. If "grad_centralization"
- is in the keys, the set value will be used. If not, the `grad_centralization` is False by default.
- This parameter only works on the convolution layer.
-
- weight_decay (Union[float, int]): An int or a floating point value for the weight decay.
- It must be equal to or greater than 0.
- If the type of `weight_decay` input is int, it will be converted to float. Default: 0.0.
- loss_scale (float): A floating point value for the loss scale. It must be greater than 0. If the
- type of `loss_scale` input is int, it will be converted to float. Default: 1.0.
-
- Raises:
- TypeError: If `learning_rate` is not one of int, float, Tensor, Iterable, LearningRateSchedule.
- TypeError: If element of `parameters` is neither Parameter nor dict.
- TypeError: If `loss_scale` is not a float.
- TypeError: If `weight_decay` is neither float nor int.
- ValueError: If `loss_scale` is less than or equal to 0.
- ValueError: If `weight_decay` is less than 0.
- ValueError: If `learning_rate` is a Tensor, but the dimension of tensor is greater than 1.
-
- Supported Platforms:
- ``Ascend`` ``GPU``
- """
-
- def __init__(self, learning_rate, parameters, weight_decay=0.0, loss_scale=1.0):
- super(Optimizer, self).__init__(auto_prefix=False)
- if parameters is not None and not isinstance(parameters, list):
- parameters = list(parameters)
-
- if not parameters:
- raise ValueError("Optimizer got an empty parameter list.")
-
- if not isinstance(parameters[0], (dict, Parameter)):
- raise TypeError("Only a list of Parameter or dict can be supported.")
-
- if isinstance(loss_scale, int):
- loss_scale = float(loss_scale)
- validator.check_value_type("loss_scale", loss_scale, [float], self.cls_name)
- validator.check_positive_float(loss_scale, "loss_scale", self.cls_name)
- self.loss_scale = loss_scale
-
- weight_decay = self._preprocess_weight_decay(weight_decay)
- self.grad_centralization = False
-
- self._unique = True
- self._target = context.get_context("device_target")
- self.dynamic_lr = False
- self.assignadd = None
- self.global_step = None
- self.is_group = False
- self.is_group_lr = False
- self.is_group_params_ordered = False
- learning_rate = self._preprocess_single_lr(learning_rate)
- if isinstance(parameters[0], dict):
- self.is_group = True
- self.group_params = []
- self.group_lr = []
- self.group_weight_decay = []
- self.group_grad_centralization = []
- self._init_group_params(parameters, learning_rate, weight_decay, self.grad_centralization)
-
- # The final value of dynamic_lr can be determined after the process of parse_single_lr and init_group_params
- if self.dynamic_lr:
- self.assignadd = P.AssignAdd()
- self.global_step = Parameter(initializer(0, [1], mindspore.int32), name='global_step')
-
- if self.is_group_lr:
- self.learning_rate = CellList(self.group_lr, auto_prefix=False) if self.dynamic_lr \
- else ParameterTuple(self.group_lr)
- else:
- self.learning_rate = self._build_single_lr(learning_rate, 'learning_rate')
-
- if self.is_group:
- self.parameters = ParameterTuple(self.group_params)
- self.weight_decay = tuple(self.group_weight_decay)
- self.weight_decay_tensor_tuple = tuple(Tensor(x, mstype.float32) for x in self.group_weight_decay)
- decay_filter = lambda x: x > 0
- self.decay_flags = tuple(decay_filter(x) for x in self.weight_decay)
- self.exec_weight_decay = any(self.decay_flags)
- self.grad_centralization_flags = tuple(self.group_grad_centralization)
- else:
- self.parameters = ParameterTuple(parameters)
- self.weight_decay = weight_decay * loss_scale
- self.weight_decay_tensor = Tensor(self.weight_decay, mstype.float32)
- decay_filter = lambda x: 'beta' not in x.name and 'gamma' not in x.name
- self.decay_flags = tuple(decay_filter(x) for x in self.parameters)
- self.exec_weight_decay = self.weight_decay > 0
- # when a parameter has been unique, there is no need do another unique in optimizer.
- for param in self.parameters:
- if param.unique:
- self._unique = False
- break
- ps_filter = lambda x: x.is_param_ps
- self.ps_parameters = tuple(ps_filter(x) for x in self.parameters)
- cache_filter = lambda x: x.cache_enable
- self.cache_enable = tuple(cache_filter(x) for x in self.parameters)
- self.reciprocal_scale = Tensor(1.0 / loss_scale, mstype.float32)
- self.need_scale = loss_scale != 1.0
- self.global_step_increase_tensor = Tensor(1, mstype.int32)
- self.param_length = len(self.parameters)
- self.map_ = C.Map()
- self._use_parallel_optimizer()
-
- def _use_parallel_optimizer(self):
- """Indicates whether to use automatic parallelism."""
- if context.get_auto_parallel_context("enable_parallel_optimizer"):
- if _get_parallel_mode() == ParallelMode.DATA_PARALLEL and context.get_context("device_target") == "Ascend":
- self.use_parallel = True
- elif _get_parallel_mode() == ParallelMode.DATA_PARALLEL \
- and context.get_context("device_target") != "Ascend":
- raise RuntimeError("Parallel optimizer only supports Ascend in data parallel mode.")
- elif _get_parallel_mode() in (ParallelMode.STAND_ALONE, ParallelMode.HYBRID_PARALLEL):
- raise RuntimeError("Parallel optimizer is not supported in {}.".format(_get_parallel_mode()))
- else:
- self.use_parallel = False
- else:
- self.use_parallel = False
- if self.use_parallel:
- if self.cls_name not in ["Lamb", "AdamWeightDecay"]:
- raise RuntimeError("Parallel optimizer does not support optimizer {}".format(self.cls_name))
- self.dev_num = _get_device_num()
- if self.dev_num > self.param_length:
- raise RuntimeError("Parallel optimizer can not be applied when the number of parameters {} is"
- " less than the number of devices {}".format(self.param_length, self.dev_num))
- self.param_rank = self._get_parameter_group_id()
- self.optim_filter = tuple(map(lambda x: x == _get_global_rank(), self.param_rank))
- self.param_names = []
- for param in self.parameters:
- self.param_names.append(param.name)
- else:
- self.optim_filter = (True,) * self.param_length
-
- @property
- def unique(self):
- """The method is to see whether to make unique. The input type is bool. The method is read-only."""
- return self._unique
-
- @unique.setter
- def unique(self, value):
- """Set whether the input value is unique."""
- if not isinstance(value, bool):
- raise TypeError("The value type must be bool, but got value type is {}".format(type(value)))
- self._unique = value
-
- @property
- def target(self):
- """The method is used to determine whether the parameter is updated on host or device. The input type is str
- and can only be 'CPU', 'Ascend' or 'GPU'."""
- return self._target
-
- @target.setter
- def target(self, value):
- """If the input value is set to "CPU", the parameters will be updated on the host using the Fused
- optimizer operation."""
- raise NotImplementedError
-
- def decay_weight(self, gradients):
- """
- Weight decay.
-
- An approach to reduce the overfitting of a deep learning neural network model.
-
- Args:
- gradients (tuple[Tensor]): The gradients of `self.parameters`, and have the same shape as
- `self.parameters`.
-
- Returns:
- tuple[Tensor], The gradients after weight decay.
- """
- if self.exec_weight_decay:
- params = self.parameters
- if self.is_group:
- gradients = self.map_(F.partial(_apply_decay), self.weight_decay_tensor_tuple, self.decay_flags,
- params, gradients)
- else:
- gradients = self.map_(F.partial(_apply_decay, self.weight_decay_tensor), self.decay_flags,
- params, gradients)
-
- return gradients
-
- def gradients_centralization(self, gradients):
- """
- Gradients centralization.
-
- A method for optimizing convolutional layer parameters to impore the training speed of a deep learning neural
- network model.
-
- Args:
- gradients (tuple[Tensor]): The gradients of `self.parameters`, and have the same shape as
- `self.parameters`.
-
- Returns:
- tuple[Tensor], The gradients after gradients centralization.
- """
- if self.is_group:
- gradients = self.map_(F.partial(_apply_grad_centralization), self.grad_centralization_flags, gradients)
-
- return gradients
-
- def scale_grad(self, gradients):
- """
- Loss scale for mixed precision.
-
- An approach of mixed precision training to improve the speed and energy efficiency of training deep neural
- network.
-
- Args:
- gradients (tuple[Tensor]): The gradients of `self.parameters`, and have the same shape as
- `self.parameters`.
-
- Returns:
- tuple[Tensor], The gradients after loss scale.
-
- """
- if self.need_scale:
- gradients = self.map_(F.partial(_grad_scale, self.reciprocal_scale), gradients)
-
- return gradients
-
- def _grad_sparse_indices_deduplicate(self, gradients):
- """ In the case of using big operators, deduplicate the 'indexes' in gradients."""
- if self._target != 'CPU' and self._unique:
- gradients = self.map_(F.partial(_indices_deduplicate), gradients)
- return gradients
-
- def _preprocess_weight_decay(self, weight_decay):
- """Check weight decay, and convert int to float."""
- if isinstance(weight_decay, (float, int)):
- weight_decay = float(weight_decay)
- validator.check_non_negative_float(weight_decay, "weight_decay", self.cls_name)
- return weight_decay
- raise TypeError("Weight decay should be int or float.")
-
- def _preprocess_grad_centralization(self, grad_centralization):
- if not isinstance(grad_centralization, bool):
- raise TypeError("The gradients centralization should be bool")
- return grad_centralization
-
- def _preprocess_single_lr(self, learning_rate):
- """Check lr value, and convert lr to a float, a Tensor or a LearningRateSchedule."""
- if isinstance(learning_rate, (float, int)):
- learning_rate = float(learning_rate)
- validator.check_non_negative_float(learning_rate, "learning rate", self.cls_name)
- return learning_rate
- if isinstance(learning_rate, Tensor) and learning_rate.ndim == 0:
- return learning_rate
-
- self.dynamic_lr = True
- if isinstance(learning_rate, Iterable):
- return Tensor(np.array(list(learning_rate)).astype(np.float32))
- if isinstance(learning_rate, Tensor):
- if learning_rate.ndim > 1:
- raise ValueError("The dim of `Tensor` type Learning rate should be a 0 or 1,"
- f"but got {learning_rate.ndim}.")
- if learning_rate.ndim == 1 and learning_rate.size < 2:
- logger.warning("If use `Tensor` type dynamic learning rate, please make sure that the number"
- "of elements in the tensor passed is greater than 1.")
- return learning_rate
- if isinstance(learning_rate, LearningRateSchedule):
- return learning_rate
- raise TypeError("Learning rate should be int, float, Tensor, Iterable or LearningRateSchedule.")
-
- def _build_single_lr(self, learning_rate, name):
- """Build learning rate value, convert learning rate to a Parameter or a LearningRateSchedule."""
- if isinstance(learning_rate, float):
- learning_rate = Parameter(Tensor(learning_rate, mstype.float32), name)
- if self.is_group_lr and self.dynamic_lr:
- learning_rate = _ConvertToCell(learning_rate)
- return learning_rate
- if isinstance(learning_rate, Tensor) and learning_rate.ndim == 0:
- learning_rate = Parameter(learning_rate, name)
- if self.is_group_lr and self.dynamic_lr:
- learning_rate = _ConvertToCell(learning_rate)
- return learning_rate
- if isinstance(learning_rate, Tensor) and learning_rate.ndim == 1:
- return _IteratorLearningRate(learning_rate, name)
- return learning_rate
-
- def _check_group_params(self, parameters):
- """Check group params."""
- parse_keys = ['params', 'lr', 'weight_decay', 'order_params', 'grad_centralization']
- for group_param in parameters:
- invalid_key = list(filter(lambda x: x not in parse_keys, group_param.keys()))
- if invalid_key:
- raise KeyError(f'The key "{invalid_key}" cannot be recognized in group params.')
-
- if 'order_params' in group_param.keys():
- if len(group_param.keys()) > 1:
- raise ValueError("The order params dict in group parameters should "
- "only include the 'order_params' key.")
- if not isinstance(group_param['order_params'], Iterable):
- raise TypeError("The value of 'order_params' should be an Iterable type.")
- continue
-
- if not group_param['params']:
- raise ValueError("Optimizer got an empty group parameter list.")
-
- for param in group_param['params']:
- if not isinstance(param, Parameter):
- raise TypeError("The group param should be an iterator of Parameter type.")
-
- def _parse_group_params(self, parameters, learning_rate):
- """Parse group params."""
- self._check_group_params(parameters)
- if isinstance(learning_rate, Tensor) and learning_rate.ndim == 1:
- tensor_lr_length = learning_rate.size
- else:
- tensor_lr_length = 0
-
- for group_param in parameters:
- if 'order_params' in group_param.keys():
- if len(group_param.keys()) > 1:
- raise ValueError("The order params dict in group parameters should "
- "only include the 'order_params' key.")
- if not isinstance(group_param['order_params'], Iterable):
- raise TypeError("The value of 'order_params' should be an Iterable type.")
- self.is_group_params_ordered = True
- continue
-
- if 'lr' in group_param.keys():
- self.is_group_lr = True
- group_lr = self._preprocess_single_lr(group_param['lr'])
-
- if isinstance(group_lr, Tensor) and group_lr.ndim == 1:
- group_lr_length = group_lr.size
- if tensor_lr_length == 0:
- tensor_lr_length = group_lr_length
- elif group_lr_length != tensor_lr_length:
- raise ValueError("The Tensor type dynamic learning rate in group should be the same size.")
-
- def _init_group_params(self, parameters, learning_rate, weight_decay, grad_centralization):
- """Initialize learning rate, weight decay or grad centralization in group params."""
- self._parse_group_params(parameters, learning_rate)
- default_lr = self._build_single_lr(learning_rate, 'learning_rate')
-
- params_store = []
- for group_num, group_param in enumerate(parameters):
- if 'order_params' in group_param.keys():
- ordered_parameters = group_param['order_params']
- continue
-
- self.group_params += group_param['params']
-
- if 'lr' in group_param.keys():
- lr_param_name = 'learning_rate_group_' + str(group_num)
- lr = self._preprocess_single_lr(group_param['lr'])
- lr = self._build_single_lr(lr, lr_param_name)
- else:
- lr = default_lr
-
- if 'weight_decay' in group_param.keys():
- cur_weight_decay = self._preprocess_weight_decay(group_param['weight_decay'])
- weight_decay_ = cur_weight_decay * self.loss_scale
- else:
- weight_decay_ = weight_decay * self.loss_scale
-
- if 'grad_centralization' in group_param.keys():
- self.grad_centralization = self._preprocess_grad_centralization(group_param['grad_centralization'])
- for param in group_param['params']:
- validator.check_value_type("parameter", param, [Parameter], self.cls_name)
- if "conv" not in param.name and self.grad_centralization is True:
- raise ValueError("Grad centralization can be perform only on the conv layer. If the parameter"
- "is not a convolution layer, this parameter cannot be set to True.")
-
- grad_centralization_ = self.grad_centralization
- else:
- grad_centralization_ = grad_centralization
-
- for key in group_param.keys():
- if key not in ('params', 'lr', 'weight_decay', 'grad_centralization'):
- logger.warning(f"The optimizer cannot parse '{key}' when setting parameter groups.")
-
- for param in group_param['params']:
- validator.check_value_type("parameter", param, [Parameter], self.cls_name)
- if param.name in params_store:
- raise RuntimeError(f"The {param.name} parameter has appeared in parameter groups.")
-
- params_store.append(param.name)
- self.group_lr.append(lr)
- self.group_weight_decay.append(weight_decay_)
- self.group_grad_centralization.append(grad_centralization_)
-
- if self.is_group_params_ordered:
- self._order_and_adjust_group_params(ordered_parameters)
-
- def _order_and_adjust_group_params(self, ordered_parameters):
- """
- Order group parameter, learning rate, weight decay and grad centralization in group params.
- """
- params_length = len(self.group_params)
- if len(ordered_parameters) != len(self.group_params):
- raise ValueError(f"The value of 'order_params' should be same with all group parameters.")
-
- ordered_params = [None] * params_length
- ordered_learning_rate = [None] * params_length
- ordered_weight_decay = [None] * params_length
- ordered_grad_centralization = [None] * params_length
- params_name = [param.name for param in ordered_parameters]
-
- for param, lr, wd, gc in zip(self.group_params, self.group_lr, self.group_weight_decay,
- self.group_grad_centralization):
- index = params_name.index(param.name)
- ordered_params[index] = param
- ordered_learning_rate[index] = lr
- ordered_weight_decay[index] = wd
- ordered_grad_centralization[index] = gc
-
- self.group_params = ordered_params
- self.group_lr = ordered_learning_rate
- self.group_weight_decay = ordered_weight_decay
- self.group_grad_centralization = ordered_grad_centralization
-
- def get_lr(self):
- """
- Get the learning rate of current step.
-
- Returns:
- float, the learning rate of current step.
- """
- lr = self.learning_rate
- if self.dynamic_lr:
- if self.is_group_lr:
- lr = ()
- for learning_rate in self.learning_rate:
- current_dynamic_lr = learning_rate(self.global_step)
- lr += (current_dynamic_lr,)
- else:
- lr = self.learning_rate(self.global_step)
-
- self.assignadd(self.global_step, self.global_step_increase_tensor)
- return lr
-
- def get_lr_parameter(self, param):
- """
- Get the learning rate of parameter.
-
- Args:
- param (Union[Parameter, list[Parameter]]): The `Parameter` or list of `Parameter`.
-
- Returns:
- Parameter, single `Parameter` or `list[Parameter]` according to the input type.
- """
- def get_lr_value(learning_rate):
- if isinstance(learning_rate, (_ConvertToCell, _IteratorLearningRate)):
- return learning_rate.learning_rate
-
- return learning_rate
-
- if isinstance(param, Parameter):
- param_list = [param]
- elif isinstance(param, list):
- param_list = param
- else:
- raise TypeError(f"The parameter only support 'Parameter' or 'list' type.")
-
- lr = []
- ids = [id(p) for p in self.parameters]
- for p in param_list:
- validator.check_value_type("parameter", p, [Parameter], self.cls_name)
- if id(p) not in ids:
- raise ValueError(f"The parameter {p.name} is not in optimizer.")
- if self.is_group_lr:
- index = ids.index(id(p))
- lr.append(get_lr_value(self.learning_rate[index]))
- else:
- lr.append(get_lr_value(self.learning_rate))
-
- return lr if isinstance(param, list) else lr[0]
-
- def _get_parameter_group_id(self):
- """
- Get the parameter partition group id, which is less than the number of devices.
-
- Returns:
- tuple, the group id tuple of parameters.
- """
- rank_list = ()
- count = 0
- for _ in range(self.param_length):
- rank_list = rank_list + (count,)
- count = count + 1
- if count == self.dev_num:
- count = 0
- return rank_list
-
- def broadcast_params(self, optim_result):
- """
- Apply Broadcast operations in the sequential order of parameter groups.
-
- Returns:
- bool, the status flag.
- """
- param_group = []
- key_group = []
- for _ in range(self.dev_num):
- param_group.append(F.make_tuple())
- key_group.append(F.make_tuple())
- for i in range(self.param_length):
- param_group[self.param_rank[i]] = param_group[self.param_rank[i]] + (self.parameters[i],)
- key = P.MakeRefKey(self.param_names[i])()
- key_group[self.param_rank[i]] = key_group[self.param_rank[i]] + (key,)
- new_param_group = []
- for root in range(self.dev_num):
- ops = P.Broadcast(root)
- if root > 0:
- param_group[root] = F.depend(param_group[root], new_param_group[root-1])
- else:
- param_group[root] = F.depend(param_group[root], optim_result)
- next_params = ops(param_group[root])
- new_param_group.append(next_params)
- for i in range(F.tuple_len(next_params)):
- F.assign(key_group[root][i], next_params[i])
- return new_param_group
-
- def construct(self, *hyper_params):
- raise NotImplementedError
-
-
- op_add = P.AddN()
- op_gather = P.Gather()
- op_mul = P.Mul()
- op_gc = inner.Centralization()
-
- _apply_decay = C.MultitypeFuncGraph("apply_decay")
- _apply_grad_centralization = C.MultitypeFuncGraph("apply_grad_centralization")
-
-
- @_apply_decay.register("Tensor", "Bool", "Tensor", "RowTensor")
- def _tensor_apply_decay_with_sparse(weight_decay, if_apply, weight, gradient):
- """Get grad with weight_decay."""
- if if_apply:
- indices = gradient.indices
- values = op_add((op_gather(weight, indices, 0) * F.cast(weight_decay, F.dtype(weight)), gradient.values))
- shape = gradient.dense_shape
- return RowTensor(indices, values, shape)
- return gradient
-
-
- @_apply_decay.register("Tensor", "Bool", "Tensor", "Tensor")
- def _tensor_apply_decay(weight_decay, if_apply, weight, gradient):
- """Get grad with weight_decay."""
- if if_apply:
- return op_add((op_mul(weight, F.cast(weight_decay, F.dtype(weight))), gradient))
- return gradient
-
-
- @_apply_grad_centralization.register("Bool", "RowTensor")
- def _tensor_apply_grad_centralization_with_sparse(if_apply, gradient):
- """Get grad with grad_centralization."""
- if if_apply:
- indices = gradient.indices
- values = op_gc(gradient.values, -1)
- shape = gradient.dense_shape
- return RowTensor(indices, values, shape)
- return gradient
-
-
- @_apply_grad_centralization.register("Bool", "Tensor")
- def _tensor_apply_grad_centralization(if_apply, gradient):
- """Get grad with grad_centralization."""
- if if_apply:
- return op_gc(gradient, -1)
- return gradient
-
-
- _grad_scale = C.MultitypeFuncGraph("grad_scale")
- _indices_deduplicate = C.MultitypeFuncGraph("indices_deduplicate")
-
-
- @_grad_scale.register("Number", "Tensor")
- def tensor_grad_scale(scale, grad):
- """Get grad with scale."""
- if scale == 1.0:
- return grad
- return op_mul(grad, F.cast(scale, F.dtype(grad)))
-
-
- @_grad_scale.register("Tensor", "Tensor")
- def tensor_grad_scale_with_tensor(scale, grad):
- """Get grad with scale."""
- return op_mul(grad, F.cast(scale, F.dtype(grad)))
-
-
- @_grad_scale.register("Tensor", "RowTensor")
- def tensor_grad_scale_with_sparse(scale, grad):
- """Get grad with scale."""
- return RowTensor(grad.indices, grad.values * F.cast(scale, F.dtype(grad.values)), grad.dense_shape)
-
-
- @_indices_deduplicate.register("RowTensor")
- def rowtensor_deduplicate_indices_slices(grad):
- """Unique the indices and sums the 'values' corresponding to the duplicate indices."""
- indices = grad.indices
- values = grad.values
-
- unique_indices, index_position = P.Unique()(indices)
- summed_values = P.UnsortedSegmentSum()(values, index_position, P.DynamicShape()(unique_indices)[0])
-
- return RowTensor(unique_indices, summed_values, grad.dense_shape)
-
-
- @_indices_deduplicate.register("Tensor")
- def tensor_deduplicate_indice_slices(grad):
- """Return the input gradient directly in the dense sences."""
- return grad
-
-
- class _ConvertToCell(LearningRateSchedule):
- """Inner api, convert learning rate of scalar to LearningRateSchedule."""
- def __init__(self, learning_rate):
- super(_ConvertToCell, self).__init__()
- if not isinstance(learning_rate, Parameter):
- raise TypeError('Learning rate must be Parameter.')
- self.learning_rate = learning_rate
-
- def construct(self, global_step):
- return self.learning_rate + 1.0 - 1.0
-
-
- class _IteratorLearningRate(LearningRateSchedule):
- """Inner api, convert learning rate of Tensor(list) to LearningRateSchedule."""
- def __init__(self, learning_rate, name):
- super(_IteratorLearningRate, self).__init__()
- if isinstance(learning_rate, Tensor):
- if learning_rate.ndim != 1:
- raise ValueError("The dim of `Tensor` type dynamic learning rate should be a 1,"
- f"but got {learning_rate.ndim}.")
- else:
- raise TypeError("Learning rate should be Tensor.")
-
- self.learning_rate = Parameter(learning_rate, name)
- self.gather = P.Gather()
-
- def construct(self, global_step):
- return self.gather(self.learning_rate, global_step, 0)
|