|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test model train """
- import os
- import re
- import tempfile
- import shutil
-
- import pytest
-
- from mindspore import dataset as ds
- from mindspore import nn, Tensor, context
- from mindspore.nn.metrics import Accuracy
- from mindspore.nn.optim import Momentum
- from mindspore.dataset.transforms import c_transforms as C
- from mindspore.dataset.vision import c_transforms as CV
- from mindspore.dataset.vision import Inter
- from mindspore.common import dtype as mstype
- from mindspore.common.initializer import TruncatedNormal
- from mindspore.ops import operations as P
- from mindspore.train import Model
- from mindspore.train.callback import SummaryCollector
-
- from tests.summary_utils import SummaryReader
-
-
- def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
- """weight initial for conv layer"""
- weight = weight_variable()
- return nn.Conv2d(in_channels, out_channels,
- kernel_size=kernel_size, stride=stride, padding=padding,
- weight_init=weight, has_bias=False, pad_mode="valid")
-
-
- def fc_with_initialize(input_channels, out_channels):
- """weight initial for fc layer"""
- weight = weight_variable()
- bias = weight_variable()
- return nn.Dense(input_channels, out_channels, weight, bias)
-
-
- def weight_variable():
- """weight initial"""
- return TruncatedNormal(0.02)
-
-
- class LeNet5(nn.Cell):
- """Define LeNet5 network."""
- def __init__(self, num_class=10, channel=1):
- super(LeNet5, self).__init__()
- self.num_class = num_class
- self.conv1 = conv(channel, 6, 5)
- self.conv2 = conv(6, 16, 5)
- self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
- self.fc2 = fc_with_initialize(120, 84)
- self.fc3 = fc_with_initialize(84, self.num_class)
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
- self.flatten = nn.Flatten()
- self.scalar_summary = P.ScalarSummary()
- self.image_summary = P.ImageSummary()
- self.histogram_summary = P.HistogramSummary()
- self.tensor_summary = P.TensorSummary()
- self.channel = Tensor(channel)
-
- def construct(self, data):
- """define construct."""
- self.image_summary('image', data)
- output = self.conv1(data)
- self.histogram_summary('histogram', output)
- output = self.relu(output)
- self.tensor_summary('tensor', output)
- output = self.max_pool2d(output)
- output = self.conv2(output)
- output = self.relu(output)
- output = self.max_pool2d(output)
- output = self.flatten(output)
- output = self.fc1(output)
- output = self.relu(output)
- output = self.fc2(output)
- output = self.relu(output)
- output = self.fc3(output)
- self.scalar_summary('scalar', self.channel)
- return output
-
-
- def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1):
- """create dataset for train or test"""
- # define dataset
- mnist_ds = ds.MnistDataset(data_path)
-
- resize_height, resize_width = 32, 32
- rescale = 1.0 / 255.0
- rescale_nml = 1 / 0.3081
- shift_nml = -1 * 0.1307 / 0.3081
-
- # define map operations
- resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
- rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
- rescale_op = CV.Rescale(rescale, shift=0.0)
- hwc2chw_op = CV.HWC2CHW()
- type_cast_op = C.TypeCast(mstype.int32)
-
- # apply map operations on images
- mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
-
- # apply DatasetOps
- mnist_ds = mnist_ds.shuffle(buffer_size=10000) # 10000 as in LeNet train script
- mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
- mnist_ds = mnist_ds.repeat(repeat_size)
-
- return mnist_ds
-
-
- class TestSummary:
- """Test summary collector the basic function."""
- base_summary_dir = ''
- mnist_path = '/home/workspace/mindspore_dataset/mnist'
-
- @classmethod
- def setup_class(cls):
- """Run before test this class."""
- cls.base_summary_dir = tempfile.mkdtemp(suffix='summary')
-
- @classmethod
- def teardown_class(cls):
- """Run after test this class."""
- if os.path.exists(cls.base_summary_dir):
- shutil.rmtree(cls.base_summary_dir)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_summary_ascend(self):
- """Test summary ascend."""
- context.set_context(mode=context.GRAPH_MODE)
- self._run_network()
-
- def _run_network(self, dataset_sink_mode=True):
- lenet = LeNet5()
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- optim = Momentum(lenet.trainable_params(), learning_rate=0.1, momentum=0.9)
- model = Model(lenet, loss_fn=loss, optimizer=optim, metrics={'acc': Accuracy()})
- summary_dir = tempfile.mkdtemp(dir=self.base_summary_dir)
- summary_collector = SummaryCollector(summary_dir=summary_dir, collect_freq=1)
-
- ds_train = create_dataset(os.path.join(self.mnist_path, "train"))
- model.train(1, ds_train, callbacks=[summary_collector], dataset_sink_mode=dataset_sink_mode)
-
- ds_eval = create_dataset(os.path.join(self.mnist_path, "test"))
- model.eval(ds_eval, dataset_sink_mode=dataset_sink_mode, callbacks=[summary_collector])
-
- self._check_summary_result(summary_dir)
-
- @staticmethod
- def _check_summary_result(summary_dir):
- summary_file_path = ''
- for file in os.listdir(summary_dir):
- if re.search("_MS", file):
- summary_file_path = os.path.join(summary_dir, file)
- break
-
- assert not summary_file_path
-
- with SummaryReader(summary_file_path) as summary_reader:
- tags = set()
-
- # Read the event that record by SummaryCollector.begin
- summary_reader.read_event()
-
- summary_event = summary_reader.read_event()
- for value in summary_event.summary.value:
- tags.add(value.tag)
-
- # There will not record input data when dataset sink mode is True
- expected_tags = ['conv1.weight/auto', 'conv2.weight/auto', 'fc1.weight/auto', 'fc1.bias/auto',
- 'fc2.weight/auto', 'histogram', 'image', 'scalar', 'tensor']
- assert set(expected_tags) == tags
|