|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """MobileNetV2 utils"""
-
- import time
- import numpy as np
-
- from mindspore.train.callback import Callback
- from mindspore import Tensor
- from mindspore import nn
- from mindspore.nn.loss.loss import _Loss
- from mindspore.ops import operations as P
- from mindspore.ops import functional as F
- from mindspore.common import dtype as mstype
-
-
- class Monitor(Callback):
- """
- Monitor loss and time.
-
- Args:
- lr_init (numpy array): train lr
-
- Returns:
- None
-
- Examples:
- >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
- """
-
- def __init__(self, lr_init=None, step_threshold=10):
- super(Monitor, self).__init__()
- self.lr_init = lr_init
- self.lr_init_len = len(lr_init)
- self.step_threshold = step_threshold
-
- def epoch_begin(self, run_context):
- self.losses = []
- self.epoch_time = time.time()
-
- def epoch_end(self, run_context):
- cb_params = run_context.original_args()
-
- epoch_mseconds = (time.time() - self.epoch_time) * 1000
- per_step_mseconds = epoch_mseconds / cb_params.batch_num
- print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:8.6f}".format(epoch_mseconds,
- per_step_mseconds,
- np.mean(self.losses)))
- self.epoch_mseconds = epoch_mseconds
-
- def step_begin(self, run_context):
- self.step_time = time.time()
-
- def step_end(self, run_context):
- cb_params = run_context.original_args()
- step_mseconds = (time.time() - self.step_time) * 1000
- step_loss = cb_params.net_outputs
-
- if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
- step_loss = step_loss[0]
- if isinstance(step_loss, Tensor):
- step_loss = np.mean(step_loss.asnumpy())
-
- self.losses.append(step_loss)
- cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num
-
- print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:8.6f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.5f}]".format(
- cb_params.cur_epoch_num, cb_params.epoch_num, cur_step_in_epoch +
- 1, cb_params.batch_num, step_loss,
- np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]))
-
- if cb_params.cur_step_num == self.step_threshold:
- run_context.request_stop()
-
-
- class CrossEntropyWithLabelSmooth(_Loss):
- """
- CrossEntropyWith LabelSmooth.
-
- Args:
- smooth_factor (float): smooth factor, default=0.
- num_classes (int): num classes
-
- Returns:
- None.
-
- Examples:
- >>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000)
- """
-
- def __init__(self, smooth_factor=0., num_classes=1000):
- super(CrossEntropyWithLabelSmooth, self).__init__()
- self.onehot = P.OneHot()
- self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
- self.off_value = Tensor(1.0 * smooth_factor /
- (num_classes - 1), mstype.float32)
- self.ce = nn.SoftmaxCrossEntropyWithLogits()
- self.mean = P.ReduceMean(False)
- self.cast = P.Cast()
-
- def construct(self, logit, label):
- one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1],
- self.on_value, self.off_value)
- out_loss = self.ce(logit, one_hot_label)
- out_loss = self.mean(out_loss, 0)
- return out_loss
|