|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test cases for Poisson distribution"""
- import numpy as np
- from scipy import stats
- import mindspore.context as context
- import mindspore.nn as nn
- import mindspore.nn.probability.distribution as msd
- from mindspore import Tensor
- from mindspore import dtype
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
- class Prob(nn.Cell):
- """
- Test class: probability of Poisson distribution.
- """
- def __init__(self):
- super(Prob, self).__init__()
- self.p = msd.Poisson([0.5], dtype=dtype.float32)
-
- def construct(self, x_):
- return self.p.prob(x_)
-
- def test_pdf():
- """
- Test pdf.
- """
- poisson_benchmark = stats.poisson(mu=0.5)
- expect_pdf = poisson_benchmark.pmf([-1.0, 0.0, 1.0]).astype(np.float32)
- pdf = Prob()
- x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
- output = pdf(x_)
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
-
- class LogProb(nn.Cell):
- """
- Test class: log probability of Poisson distribution.
- """
- def __init__(self):
- super(LogProb, self).__init__()
- self.p = msd.Poisson(0.5, dtype=dtype.float32)
-
- def construct(self, x_):
- return self.p.log_prob(x_)
-
- def test_log_likelihood():
- """
- Test log_pdf.
- """
- poisson_benchmark = stats.poisson(mu=0.5)
- expect_logpdf = poisson_benchmark.logpmf([1.0, 2.0]).astype(np.float32)
- logprob = LogProb()
- x_ = Tensor(np.array([1.0, 2.0]).astype(np.float32), dtype=dtype.float32)
- output = logprob(x_)
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
-
- class Basics(nn.Cell):
- """
- Test class: mean/sd/mode of Poisson distribution.
- """
- def __init__(self):
- super(Basics, self).__init__()
- self.p = msd.Poisson([1.44], dtype=dtype.float32)
-
- def construct(self):
- return self.p.mean(), self.p.sd(), self.p.mode()
-
- def test_basics():
- """
- Test mean/standard/mode deviation.
- """
- basics = Basics()
- mean, sd, mode = basics()
- expect_mean = 1.44
- expect_sd = 1.2
- expect_mode = 1
- tol = 1e-6
- assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
- assert (np.abs(sd.asnumpy() - expect_sd) < tol).all()
- assert (np.abs(mode.asnumpy() - expect_mode) < tol).all()
-
- class Sampling(nn.Cell):
- """
- Test class: sample of Poisson distribution.
- """
- def __init__(self, shape, seed=0):
- super(Sampling, self).__init__()
- self.p = msd.Poisson([[1.0], [0.5]], seed=seed, dtype=dtype.float32)
- self.shape = shape
-
- def construct(self, rate=None):
- return self.p.sample(self.shape, rate)
-
- def test_sample():
- """
- Test sample.
- """
- shape = (2, 3)
- seed = 10
- rate = Tensor([1.0, 2.0, 3.0], dtype=dtype.float32)
- sample = Sampling(shape, seed=seed)
- output = sample(rate)
- assert output.shape == (2, 3, 3)
-
- class CDF(nn.Cell):
- """
- Test class: cdf of Poisson distribution.
- """
- def __init__(self):
- super(CDF, self).__init__()
- self.p = msd.Poisson([0.5], dtype=dtype.float32)
-
- def construct(self, x_):
- return self.p.cdf(x_)
-
- def test_cdf():
- """
- Test cdf.
- """
- poisson_benchmark = stats.poisson(mu=0.5)
- expect_cdf = poisson_benchmark.cdf([-1.0, 0.0, 1.0]).astype(np.float32)
- cdf = CDF()
- x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
- output = cdf(x_)
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_cdf) < tol).all()
-
- class LogCDF(nn.Cell):
- """
- Test class: log_cdf of Poisson distribution.
- """
- def __init__(self):
- super(LogCDF, self).__init__()
- self.p = msd.Poisson([0.5], dtype=dtype.float32)
-
- def construct(self, x_):
- return self.p.log_cdf(x_)
-
- def test_log_cdf():
- """
- Test log_cdf.
- """
- poisson_benchmark = stats.poisson(mu=0.5)
- expect_logcdf = poisson_benchmark.logcdf([0.5, 1.0, 2.5]).astype(np.float32)
- logcdf = LogCDF()
- x_ = Tensor(np.array([0.5, 1.0, 2.5]).astype(np.float32), dtype=dtype.float32)
- output = logcdf(x_)
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_logcdf) < tol).all()
-
- class SF(nn.Cell):
- """
- Test class: survival function of Poisson distribution.
- """
- def __init__(self):
- super(SF, self).__init__()
- self.p = msd.Poisson(0.5, dtype=dtype.float32)
-
- def construct(self, x_):
- return self.p.survival_function(x_)
-
- def test_survival():
- """
- Test survival function.
- """
- poisson_benchmark = stats.poisson(mu=0.5)
- expect_survival = poisson_benchmark.sf([-1.0, 0.0, 1.0]).astype(np.float32)
- survival = SF()
- x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
- output = survival(x_)
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_survival) < tol).all()
-
- class LogSF(nn.Cell):
- """
- Test class: log survival function of Poisson distribution.
- """
- def __init__(self):
- super(LogSF, self).__init__()
- self.p = msd.Poisson(0.5, dtype=dtype.float32)
-
- def construct(self, x_):
- return self.p.log_survival(x_)
-
- def test_log_survival():
- """
- Test log survival function.
- """
- poisson_benchmark = stats.poisson(mu=0.5)
- expect_logsurvival = poisson_benchmark.logsf([-1.0, 0.0, 1.0]).astype(np.float32)
- logsurvival = LogSF()
- x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
- output = logsurvival(x_)
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_logsurvival) < tol).all()
|