|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test cases for Logistic distribution"""
- import numpy as np
- from scipy import stats
- import mindspore.context as context
- import mindspore.nn as nn
- import mindspore.nn.probability.distribution as msd
- from mindspore import Tensor
- from mindspore import dtype
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
- class Prob(nn.Cell):
- """
- Test class: probability of Logistic distribution.
- """
- def __init__(self):
- super(Prob, self).__init__()
- self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.l.prob(x_)
-
- def test_pdf():
- """
- Test pdf.
- """
- logistic_benchmark = stats.logistic(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_pdf = logistic_benchmark.pdf([1.0, 2.0]).astype(np.float32)
- pdf = Prob()
- output = pdf(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
-
- class LogProb(nn.Cell):
- """
- Test class: log probability of Logistic distribution.
- """
- def __init__(self):
- super(LogProb, self).__init__()
- self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.l.log_prob(x_)
-
- def test_log_likelihood():
- """
- Test log_pdf.
- """
- logistic_benchmark = stats.logistic(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_logpdf = logistic_benchmark.logpdf([1.0, 2.0]).astype(np.float32)
- logprob = LogProb()
- output = logprob(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
-
- class Basics(nn.Cell):
- """
- Test class: mean/sd/mode of Logistic distribution.
- """
- def __init__(self):
- super(Basics, self).__init__()
- self.l = msd.Logistic(np.array([3.0]), np.array([2.0, 4.0]), dtype=dtype.float32)
-
- def construct(self):
- return self.l.mean(), self.l.sd(), self.l.mode()
-
- def test_basics():
- """
- Test mean/standard deviation/mode.
- """
- basics = Basics()
- mean, sd, mode = basics()
- expect_mean = [3.0, 3.0]
- expect_sd = np.pi * np.array([2.0, 4.0]) / np.sqrt(np.array([3.0]))
- tol = 1e-6
- assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
- assert (np.abs(mode.asnumpy() - expect_mean) < tol).all()
- assert (np.abs(sd.asnumpy() - expect_sd) < tol).all()
-
- class Sampling(nn.Cell):
- """
- Test class: sample of Logistic distribution.
- """
- def __init__(self, shape, seed=0):
- super(Sampling, self).__init__()
- self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), seed=seed, dtype=dtype.float32)
- self.shape = shape
-
- def construct(self, mean=None, sd=None):
- return self.l.sample(self.shape, mean, sd)
-
- def test_sample():
- """
- Test sample.
- """
- shape = (2, 3)
- seed = 10
- mean = Tensor([2.0], dtype=dtype.float32)
- sd = Tensor([2.0, 2.0, 2.0], dtype=dtype.float32)
- sample = Sampling(shape, seed=seed)
- output = sample(mean, sd)
- assert output.shape == (2, 3, 3)
-
- class CDF(nn.Cell):
- """
- Test class: cdf of Logistic distribution.
- """
- def __init__(self):
- super(CDF, self).__init__()
- self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.l.cdf(x_)
-
-
- def test_cdf():
- """
- Test cdf.
- """
- logistic_benchmark = stats.logistic(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_cdf = logistic_benchmark.cdf([1.0, 2.0]).astype(np.float32)
- cdf = CDF()
- output = cdf(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 2e-5
- assert (np.abs(output.asnumpy() - expect_cdf) < tol).all()
-
- class LogCDF(nn.Cell):
- """
- Test class: log_cdf of Logistic distribution.
- """
- def __init__(self):
- super(LogCDF, self).__init__()
- self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.l.log_cdf(x_)
-
- def test_log_cdf():
- """
- Test log cdf.
- """
- logistic_benchmark = stats.logistic(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_logcdf = logistic_benchmark.logcdf([1.0, 2.0]).astype(np.float32)
- logcdf = LogCDF()
- output = logcdf(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 5e-5
- assert (np.abs(output.asnumpy() - expect_logcdf) < tol).all()
-
- class SF(nn.Cell):
- """
- Test class: survival function of Logistic distribution.
- """
- def __init__(self):
- super(SF, self).__init__()
- self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.l.survival_function(x_)
-
- def test_survival():
- """
- Test log_survival.
- """
- logistic_benchmark = stats.logistic(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_survival = logistic_benchmark.sf([1.0, 2.0]).astype(np.float32)
- survival_function = SF()
- output = survival_function(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 2e-5
- assert (np.abs(output.asnumpy() - expect_survival) < tol).all()
-
- class LogSF(nn.Cell):
- """
- Test class: log survival function of Logistic distribution.
- """
- def __init__(self):
- super(LogSF, self).__init__()
- self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.l.log_survival(x_)
-
- def test_log_survival():
- """
- Test log_survival.
- """
- logistic_benchmark = stats.logistic(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_log_survival = logistic_benchmark.logsf([1.0, 2.0]).astype(np.float32)
- log_survival = LogSF()
- output = log_survival(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 2e-5
- assert (np.abs(output.asnumpy() - expect_log_survival) < tol).all()
-
- class EntropyH(nn.Cell):
- """
- Test class: entropy of Logistic distribution.
- """
- def __init__(self):
- super(EntropyH, self).__init__()
- self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self):
- return self.l.entropy()
-
- def test_entropy():
- """
- Test entropy.
- """
- logistic_benchmark = stats.logistic(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_entropy = logistic_benchmark.entropy().astype(np.float32)
- entropy = EntropyH()
- output = entropy()
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_entropy) < tol).all()
|