|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import mindspore.nn as nn
- from mindspore.ops import operations as P
-
-
- class AlexNet(nn.Cell):
- def __init__(self, num_classes=10):
- super(AlexNet, self).__init__()
- self.batch_size = 32
- self.conv1 = nn.Conv2d(3, 96, 11, stride=4, pad_mode="valid")
- self.conv2 = nn.Conv2d(96, 256, 5, stride=1, pad_mode="same")
- self.conv3 = nn.Conv2d(256, 384, 3, stride=1, pad_mode="same")
- self.conv4 = nn.Conv2d(384, 384, 3, stride=1, pad_mode="same")
- self.conv5 = nn.Conv2d(384, 256, 3, stride=1, pad_mode="same")
- self.relu = P.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2)
- self.flatten = nn.Flatten()
- self.fc1 = nn.Dense(66256, 4096)
- self.fc2 = nn.Dense(4096, 4096)
- self.fc3 = nn.Dense(4096, num_classes)
-
- def construct(self, x):
- x = self.conv1(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.conv2(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.conv3(x)
- x = self.relu(x)
- x = self.conv4(x)
- x = self.relu(x)
- x = self.conv5(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.flatten(x)
- x = self.fc1(x)
- x = self.relu(x)
- x = self.fc2(x)
- x = self.relu(x)
- x = self.fc3(x)
- return x
|