|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing RandomSharpness op in DE
- """
- import numpy as np
- import mindspore.dataset as ds
- import mindspore.dataset.engine as de
- import mindspore.dataset.transforms.vision.py_transforms as F
- from mindspore import log as logger
- from util import visualize_list, diff_mse, save_and_check_md5, \
- config_get_set_seed, config_get_set_num_parallel_workers
-
- DATA_DIR = "../data/dataset/testImageNetData/train/"
-
- GENERATE_GOLDEN = False
-
-
- def test_random_sharpness(degrees=(0.1, 1.9), plot=False):
- """
- Test RandomSharpness
- """
- logger.info("Test RandomSharpness")
-
- # Original Images
- data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
-
- transforms_original = F.ComposeOp([F.Decode(),
- F.Resize((224, 224)),
- F.ToTensor()])
-
- ds_original = data.map(input_columns="image",
- operations=transforms_original())
-
- ds_original = ds_original.batch(512)
-
- for idx, (image, _) in enumerate(ds_original):
- if idx == 0:
- images_original = np.transpose(image, (0, 2, 3, 1))
- else:
- images_original = np.append(images_original,
- np.transpose(image, (0, 2, 3, 1)),
- axis=0)
-
- # Random Sharpness Adjusted Images
- data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
-
- transforms_random_sharpness = F.ComposeOp([F.Decode(),
- F.Resize((224, 224)),
- F.RandomSharpness(degrees=degrees),
- F.ToTensor()])
-
- ds_random_sharpness = data.map(input_columns="image",
- operations=transforms_random_sharpness())
-
- ds_random_sharpness = ds_random_sharpness.batch(512)
-
- for idx, (image, _) in enumerate(ds_random_sharpness):
- if idx == 0:
- images_random_sharpness = np.transpose(image, (0, 2, 3, 1))
- else:
- images_random_sharpness = np.append(images_random_sharpness,
- np.transpose(image, (0, 2, 3, 1)),
- axis=0)
-
- num_samples = images_original.shape[0]
- mse = np.zeros(num_samples)
- for i in range(num_samples):
- mse[i] = diff_mse(images_random_sharpness[i], images_original[i])
-
- logger.info("MSE= {}".format(str(np.mean(mse))))
-
- if plot:
- visualize_list(images_original, images_random_sharpness)
-
-
- def test_random_sharpness_md5():
- """
- Test RandomSharpness with md5 comparison
- """
- logger.info("Test RandomSharpness with md5 comparison")
- original_seed = config_get_set_seed(5)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # define map operations
- transforms = [
- F.Decode(),
- F.RandomSharpness((0.1, 1.9)),
- F.ToTensor()
- ]
- transform = F.ComposeOp(transforms)
-
- # Generate dataset
- data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
- data = data.map(input_columns=["image"], operations=transform())
-
- # check results with md5 comparison
- filename = "random_sharpness_01_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore configuration
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
-
- if __name__ == "__main__":
- test_random_sharpness()
- test_random_sharpness(plot=True)
- test_random_sharpness(degrees=(0.5, 1.5), plot=True)
- test_random_sharpness_md5()
|