|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing the OneHot Op
- """
- import numpy as np
-
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.c_transforms as data_trans
- import mindspore.dataset.transforms.vision.c_transforms as c_vision
- from mindspore import log as logger
- from util import diff_mse
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
-
- def one_hot(index, depth):
- """
- Apply the one_hot
- """
- arr = np.zeros([1, depth], dtype=np.int32)
- arr[0, index] = 1
- return arr
-
-
- def test_one_hot():
- """
- Test OneHot Tensor Operator
- """
- logger.info("test_one_hot")
-
- depth = 10
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
- one_hot_op = data_trans.OneHot(num_classes=depth)
- data1 = data1.map(input_columns=["label"], operations=one_hot_op, columns_order=["label"])
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["label"], shuffle=False)
-
- num_iter = 0
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- assert len(item1) == len(item2)
- label1 = item1["label"]
- label2 = one_hot(item2["label"][0], depth)
- mse = diff_mse(label1, label2)
- logger.info("DE one_hot: {}, Numpy one_hot: {}, diff: {}".format(label1, label2, mse))
- assert mse == 0
- num_iter += 1
- assert num_iter == 3
-
- def test_one_hot_post_aug():
- """
- Test One Hot Encoding after Multiple Data Augmentation Operators
- """
- logger.info("test_one_hot_post_aug")
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
-
- # Define data augmentation parameters
- rescale = 1.0 / 255.0
- shift = 0.0
- resize_height, resize_width = 224, 224
-
- # Define map operations
- decode_op = c_vision.Decode()
- rescale_op = c_vision.Rescale(rescale, shift)
- resize_op = c_vision.Resize((resize_height, resize_width))
-
- # Apply map operations on images
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- data1 = data1.map(input_columns=["image"], operations=rescale_op)
- data1 = data1.map(input_columns=["image"], operations=resize_op)
-
- # Apply one-hot encoding on labels
- depth = 4
- one_hot_encode = data_trans.OneHot(depth)
- data1 = data1.map(input_columns=["label"], operations=one_hot_encode)
-
- # Apply datasets ops
- buffer_size = 100
- seed = 10
- batch_size = 2
- ds.config.set_seed(seed)
- data1 = data1.shuffle(buffer_size=buffer_size)
- data1 = data1.batch(batch_size, drop_remainder=True)
-
- num_iter = 0
- for item in data1.create_dict_iterator():
- logger.info("image is: {}".format(item["image"]))
- logger.info("label is: {}".format(item["label"]))
- num_iter += 1
-
- assert num_iter == 1
-
-
- if __name__ == "__main__":
- test_one_hot()
- test_one_hot_post_aug()
|