|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- '''
- CRF script.
- '''
-
- import numpy as np
- import mindspore.nn as nn
- from mindspore.ops import operations as P
- from mindspore.common.tensor import Tensor
- from mindspore.common.parameter import Parameter
- import mindspore.common.dtype as mstype
-
- class CRF(nn.Cell):
- '''
- Conditional Random Field
- Args:
- tag_to_index: The dict for tag to index mapping with extra "<START>" and "<STOP>"sign.
- batch_size: Batch size, i.e., the length of the first dimension.
- seq_length: Sequence length, i.e., the length of the second dimention.
- is_training: Specifies whether to use training mode.
- Returns:
- Training mode: Tensor, total loss.
- Evaluation mode: Tuple, the index for each step with the highest score; Tuple, the index for the last
- step with the highest score.
- '''
- def __init__(self, tag_to_index, batch_size=1, seq_length=128, is_training=True):
-
- super(CRF, self).__init__()
- self.target_size = len(tag_to_index)
- self.is_training = is_training
- self.tag_to_index = tag_to_index
- self.batch_size = batch_size
- self.seq_length = seq_length
- self.START_TAG = "<START>"
- self.STOP_TAG = "<STOP>"
- self.START_VALUE = Tensor(self.target_size-2, dtype=mstype.int32)
- self.STOP_VALUE = Tensor(self.target_size-1, dtype=mstype.int32)
- transitions = np.random.normal(size=(self.target_size, self.target_size)).astype(np.float32)
- transitions[tag_to_index[self.START_TAG], :] = -10000
- transitions[:, tag_to_index[self.STOP_TAG]] = -10000
- self.transitions = Parameter(Tensor(transitions), name="transition_matrix")
- self.cat = P.Concat(axis=-1)
- self.argmax = P.ArgMaxWithValue(axis=-1)
- self.log = P.Log()
- self.exp = P.Exp()
- self.sum = P.ReduceSum()
- self.tile = P.Tile()
- self.reduce_sum = P.ReduceSum(keep_dims=True)
- self.reshape = P.Reshape()
- self.expand = P.ExpandDims()
- self.mean = P.ReduceMean()
- init_alphas = np.ones(shape=(self.batch_size, self.target_size)) * -10000.0
- init_alphas[:, self.tag_to_index[self.START_TAG]] = 0.
- self.init_alphas = Tensor(init_alphas, dtype=mstype.float32)
- self.cast = P.Cast()
- self.reduce_max = P.ReduceMax(keep_dims=True)
- self.on_value = Tensor(1.0, dtype=mstype.float32)
- self.off_value = Tensor(0.0, dtype=mstype.float32)
- self.onehot = P.OneHot()
-
- def log_sum_exp(self, logits):
- '''
- Compute the log_sum_exp score for normalization factor.
- '''
- max_score = self.reduce_max(logits, -1) #16 5 5
- score = self.log(self.reduce_sum(self.exp(logits - max_score), -1))
- score = max_score + score
- return score
-
- def _realpath_score(self, features, label):
- '''
- Compute the emission and transition score for the real path.
- '''
- label = label * 1
- concat_A = self.tile(self.reshape(self.START_VALUE, (1,)), (self.batch_size,))
- concat_A = self.reshape(concat_A, (self.batch_size, 1))
- labels = self.cat((concat_A, label))
- onehot_label = self.onehot(label, self.target_size, self.on_value, self.off_value)
- emits = features * onehot_label
- labels = self.onehot(labels, self.target_size, self.on_value, self.off_value)
- label1 = labels[:, 1:, :]
- label2 = labels[:, :self.seq_length, :]
- label1 = self.expand(label1, 3)
- label2 = self.expand(label2, 2)
- label_trans = label1 * label2
- transitions = self.expand(self.expand(self.transitions, 0), 0)
- trans = transitions * label_trans
- score = self.sum(emits, (1, 2)) + self.sum(trans, (1, 2, 3))
- stop_value_index = labels[:, (self.seq_length-1):self.seq_length, :]
- stop_value = self.transitions[(self.target_size-1):self.target_size, :]
- stop_score = stop_value * self.reshape(stop_value_index, (self.batch_size, self.target_size))
- score = score + self.sum(stop_score, 1)
- score = self.reshape(score, (self.batch_size, -1))
- return score
-
- def _normalization_factor(self, features):
- '''
- Compute the total score for all the paths.
- '''
- forward_var = self.init_alphas
- forward_var = self.expand(forward_var, 1)
- for idx in range(self.seq_length):
- feat = features[:, idx:(idx+1), :]
- emit_score = self.reshape(feat, (self.batch_size, self.target_size, 1))
- next_tag_var = emit_score + self.transitions + forward_var
- forward_var = self.log_sum_exp(next_tag_var)
- forward_var = self.reshape(forward_var, (self.batch_size, 1, self.target_size))
- terminal_var = forward_var + self.reshape(self.transitions[(self.target_size-1):self.target_size, :], (1, -1))
- alpha = self.log_sum_exp(terminal_var)
- alpha = self.reshape(alpha, (self.batch_size, -1))
- return alpha
-
- def _decoder(self, features):
- '''
- Viterbi decode for evaluation.
- '''
- backpointers = ()
- forward_var = self.init_alphas
- for idx in range(self.seq_length):
- feat = features[:, idx:(idx+1), :]
- feat = self.reshape(feat, (self.batch_size, self.target_size))
- bptrs_t = ()
-
- next_tag_var = self.expand(forward_var, 1) + self.transitions
- best_tag_id, best_tag_value = self.argmax(next_tag_var)
- bptrs_t += (best_tag_id,)
- forward_var = best_tag_value + feat
-
- backpointers += (bptrs_t,)
- terminal_var = forward_var + self.reshape(self.transitions[(self.target_size-1):self.target_size, :], (1, -1))
- best_tag_id, _ = self.argmax(terminal_var)
- return backpointers, best_tag_id
-
- def construct(self, features, label):
- if self.is_training:
- forward_score = self._normalization_factor(features)
- gold_score = self._realpath_score(features, label)
- return_value = self.mean(forward_score - gold_score)
- else:
- path_list, tag = self._decoder(features)
- return_value = path_list, tag
- return return_value
-
- def postprocess(backpointers, best_tag_id):
- '''
- Do postprocess
- '''
- best_tag_id = best_tag_id.asnumpy()
- batch_size = len(best_tag_id)
- best_path = []
- for i in range(batch_size):
- best_path.append([])
- best_local_id = best_tag_id[i]
- best_path[-1].append(best_local_id)
- for bptrs_t in reversed(backpointers):
- bptrs_t = bptrs_t[0].asnumpy()
- local_idx = bptrs_t[i]
- best_local_id = local_idx[best_local_id]
- best_path[-1].append(best_local_id)
- # Pop off the start tag (we dont want to return that to the caller)
- best_path[-1].pop()
- best_path[-1].reverse()
- return best_path
|