|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import time
- import pytest
- import numpy as np
- from mindspore import context
- from model_zoo.gcn.src.gcn import GCN
- from model_zoo.gcn.src.metrics import LossAccuracyWrapper, TrainNetWrapper
- from model_zoo.gcn.src.config import ConfigGCN
- from model_zoo.gcn.src.dataset import get_adj_features_labels, get_mask
-
-
- DATA_DIR = '/home/workspace/mindspore_dataset/cora/cora_mr/cora_mr'
- TRAIN_NODE_NUM = 140
- EVAL_NODE_NUM = 500
- TEST_NODE_NUM = 1000
- SEED = 20
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_gcn():
- print("test_gcn begin")
- np.random.seed(SEED)
- context.set_context(mode=context.GRAPH_MODE,
- device_target="Ascend", save_graphs=False)
- config = ConfigGCN()
- config.dropout = 0.0
- adj, feature, label_onehot, _ = get_adj_features_labels(DATA_DIR)
-
- nodes_num = label_onehot.shape[0]
- train_mask = get_mask(nodes_num, 0, TRAIN_NODE_NUM)
- eval_mask = get_mask(nodes_num, TRAIN_NODE_NUM, TRAIN_NODE_NUM + EVAL_NODE_NUM)
- test_mask = get_mask(nodes_num, nodes_num - TEST_NODE_NUM, nodes_num)
-
- class_num = label_onehot.shape[1]
- gcn_net = GCN(config, adj, feature, class_num)
- gcn_net.add_flags_recursive(fp16=True)
-
- eval_net = LossAccuracyWrapper(gcn_net, label_onehot, eval_mask, config.weight_decay)
- test_net = LossAccuracyWrapper(gcn_net, label_onehot, test_mask, config.weight_decay)
- train_net = TrainNetWrapper(gcn_net, label_onehot, train_mask, config)
-
- loss_list = []
- for epoch in range(config.epochs):
- t = time.time()
-
- train_net.set_train()
- train_result = train_net()
- train_loss = train_result[0].asnumpy()
- train_accuracy = train_result[1].asnumpy()
-
- eval_net.set_train(False)
- eval_result = eval_net()
- eval_loss = eval_result[0].asnumpy()
- eval_accuracy = eval_result[1].asnumpy()
-
- loss_list.append(eval_loss)
- print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(train_loss),
- "train_acc=", "{:.5f}".format(train_accuracy), "val_loss=", "{:.5f}".format(eval_loss),
- "val_acc=", "{:.5f}".format(eval_accuracy), "time=", "{:.5f}".format(time.time() - t))
-
- if epoch > config.early_stopping and loss_list[-1] > np.mean(loss_list[-(config.early_stopping+1):-1]):
- print("Early stopping...")
- break
-
- test_net.set_train(False)
- test_result = test_net()
- test_loss = test_result[0].asnumpy()
- test_accuracy = test_result[1].asnumpy()
- print("Test set results:", "loss=", "{:.5f}".format(test_loss),
- "accuracy=", "{:.5f}".format(test_accuracy))
- assert test_accuracy > 0.812
|