|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
-
- class Net(nn.Cell):
- def __init__(self, multiples):
- super(Net, self).__init__()
- self.tile = P.Tile()
- self.multiples = multiples
-
- def construct(self, x):
- return self.tile(x, self.multiples)
-
-
- def get_output(x, multiples, enable_graph_kernel=False):
- context.set_context(enable_graph_kernel=enable_graph_kernel)
- net = Net(multiples)
- output = net(x)
- return output
-
-
- def test_tile(shape, dtype, multiples):
- x = Tensor(np.random.normal(0, 1, shape).astype(dtype))
- expect = get_output(x, multiples, False)
- output = get_output(x, multiples, True)
-
- expect_np = expect.asnumpy().copy()
- output_np = output.asnumpy().copy()
-
- assert np.allclose(expect_np, output_np, 0.0001, 0.0001)
-
-
- def test_tile_ascend():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- test_tile((24, 1), np.float16, (2, 2, 2))
- test_tile((24, 1), np.float32, (1, 2))
|