|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
- from mindspore.ops.operations import _grad_ops as G
-
-
- class NetSigmoid(nn.Cell):
- def __init__(self):
- super(NetSigmoid, self).__init__()
- self.sigmoid = P.Sigmoid()
-
- def construct(self, x):
- return self.sigmoid(x)
-
-
- class NetSigmoidGrad(nn.Cell):
- def __init__(self):
- super(NetSigmoidGrad, self).__init__()
- self.sigmoid_grad = G.SigmoidGrad()
-
- def construct(self, y, dy):
- return self.sigmoid_grad(y, dy)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_sigmoid():
- x = Tensor(np.array([[[[-1, 1, 10],
- [1, -1, 1],
- [10, 1, -1]]]]).astype(np.float32))
-
- error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6
-
- context.set_context(mode=context.GRAPH_MODE,
- enable_graph_kernel=True, device_target="GPU")
- net = NetSigmoid()
- result_open_gk = net(x)
-
- context.set_context(mode=context.GRAPH_MODE,
- enable_graph_kernel=False, device_target="GPU")
- net_beta = NetSigmoid()
- result_close_gk = net_beta(x)
- diff = result_open_gk.asnumpy() - result_close_gk.asnumpy()
- assert np.all(abs(diff) < error)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_sigmoid_grad():
- y = Tensor(np.array([[[[-1, 1, 2],
- [1, -1, 1],
- [2, 1, -1]]]]).astype(np.float32))
- dy = Tensor(np.array([[[[-11, 2, 4],
- [-1, 1, -1],
- [-4, 4, -4]]]]).astype(np.float32))
-
- error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6
-
- context.set_context(mode=context.GRAPH_MODE,
- enable_graph_kernel=True, device_target="GPU")
- net = NetSigmoidGrad()
- result_open_gk = net(y, dy)
-
- context.set_context(mode=context.GRAPH_MODE,
- enable_graph_kernel=False, device_target="GPU")
- net_beta = NetSigmoidGrad()
- result_close_gk = net_beta(y, dy)
- diff = result_open_gk.asnumpy() - result_close_gk.asnumpy()
- assert np.all(abs(diff) < error)
|