|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
-
- class LessNet(nn.Cell):
- def __init__(self):
- super(LessNet, self).__init__()
- self.ops = P.Less()
-
- def construct(self, x, y):
- return self.ops(x, y)
-
-
- class GreaterNet(nn.Cell):
- def __init__(self):
- super(GreaterNet, self).__init__()
- self.ops = P.Greater()
-
- def construct(self, x, y):
- return self.ops(x, y)
-
-
- class LessEqualNet(nn.Cell):
- def __init__(self):
- super(LessEqualNet, self).__init__()
- self.ops = P.LessEqual()
-
- def construct(self, x, y):
- return self.ops(x, y)
-
-
- class GreaterEqualNet(nn.Cell):
- def __init__(self):
- super(GreaterEqualNet, self).__init__()
- self.ops = P.GreaterEqual()
-
- def construct(self, x, y):
- return self.ops(x, y)
-
-
- def gen_data():
- # Generate data which contains broadcast scene and two inputs are expr.
- np.random.seed(0)
- x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
- y0_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32)
- x1_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(np.float16)
- y1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16)
- x2_np = np.random.randint(1, 5, 1).astype(np.int32)
- y2_np = np.random.randint(1, 5, 1).astype(np.int32)
- x3_np = np.array(768).astype(np.float32)
- y3_np = np.array(3072.5).astype(np.float32)
-
- x0 = Tensor(x0_np)
- y0 = Tensor(y0_np)
- x1 = Tensor(x1_np)
- y1 = Tensor(y1_np)
- x2 = Tensor(x2_np)
- y2 = Tensor(y2_np)
- x3 = Tensor(x3_np)
- y3 = Tensor(y3_np)
- return x0, y0, x1, y1, x2, y2, x3, y3
-
-
- def get_less_net_output(x0, y0, x1, y1, x2, y2, x3, y3, enable_graph_kernel=False):
- context.set_context(enable_graph_kernel=enable_graph_kernel)
- net_less = LessNet()
- less_output_0 = net_less(x0, y0).asnumpy()
- less_output_1 = net_less(x1, y1).asnumpy()
- less_output_2 = net_less(x2, y2).asnumpy()
- less_output_3 = net_less(x3, y3).asnumpy()
- return less_output_0, less_output_1, less_output_2, less_output_3
-
-
- def get_greater_net_output(x0, y0, x1, y1, x2, y2, x3, y3, enable_graph_kernel=False):
- context.set_context(enable_graph_kernel=enable_graph_kernel)
- net_greater = GreaterNet()
- greater_output_0 = net_greater(x0, y0).asnumpy()
- greater_output_1 = net_greater(x1, y1).asnumpy()
- greater_output_2 = net_greater(x2, y2).asnumpy()
- greater_output_3 = net_greater(x3, y3).asnumpy()
- return greater_output_0, greater_output_1, greater_output_2, greater_output_3
-
-
- def get_less_equal_net_output(x0, y0, x1, y1, x2, y2, x3, y3, enable_graph_kernel=False):
- context.set_context(enable_graph_kernel=enable_graph_kernel)
- net_less_equal = LessEqualNet()
- less_equal_output_0 = net_less_equal(x0, y0).asnumpy()
- less_equal_output_1 = net_less_equal(x1, y1).asnumpy()
- less_equal_output_2 = net_less_equal(x2, y2).asnumpy()
- less_equal_output_3 = net_less_equal(x3, y3).asnumpy()
- return less_equal_output_0, less_equal_output_1, less_equal_output_2, less_equal_output_3
-
-
- def get_greater_equal_net_output(x0, y0, x1, y1, x2, y2, x3, y3, enable_graph_kernel=False):
- context.set_context(enable_graph_kernel=enable_graph_kernel)
- net_greater_equal = GreaterEqualNet()
- greter_equal_output_0 = net_greater_equal(x0, y0).asnumpy()
- greter_equal_output_1 = net_greater_equal(x1, y1).asnumpy()
- greter_equal_output_2 = net_greater_equal(x2, y2).asnumpy()
- greter_equal_output_3 = net_greater_equal(x3, y3).asnumpy()
- return greter_equal_output_0, greter_equal_output_1, greter_equal_output_2, greter_equal_output_3
-
-
- def test_less_net():
- x0, y0, x1, y1, x2, y2, x3, y3 = gen_data()
- out_gk_on_0, out_gk_on_1, out_gk_on_2, out_gk_on_3 = get_less_net_output(x0, y0, x1, y1, x2, y2, x3, y3, True)
- out_gk_off_0, out_gk_off_1, out_gk_off_2, out_gk_off_3 = get_less_net_output(
- x0, y0, x1, y1, x2, y2, x3, y3, False)
-
- assert np.all(out_gk_on_0 == out_gk_off_0)
- assert out_gk_on_0.shape == out_gk_off_0.shape
- assert np.all(out_gk_on_1 == out_gk_off_1)
- assert out_gk_on_1.shape == out_gk_off_1.shape
- assert np.all(out_gk_on_2 == out_gk_off_2)
- assert out_gk_on_2.shape == out_gk_off_2.shape
- assert np.all(out_gk_on_3 == out_gk_off_3)
- assert out_gk_on_3.shape == out_gk_off_3.shape
-
-
- def test_greater_net():
- x0, y0, x1, y1, x2, y2, x3, y3 = gen_data()
- out_gk_on_0, out_gk_on_1, out_gk_on_2, out_gk_on_3 = get_greater_net_output(x0, y0, x1, y1, x2, y2, x3, y3, True)
- out_gk_off_0, out_gk_off_1, out_gk_off_2, out_gk_off_3 = get_greater_net_output(
- x0, y0, x1, y1, x2, y2, x3, y3, False)
-
- assert np.all(out_gk_on_0 == out_gk_off_0)
- assert out_gk_on_0.shape == out_gk_off_0.shape
- assert np.all(out_gk_on_1 == out_gk_off_1)
- assert out_gk_on_1.shape == out_gk_off_1.shape
- assert np.all(out_gk_on_2 == out_gk_off_2)
- assert out_gk_on_2.shape == out_gk_off_2.shape
- assert np.all(out_gk_on_3 == out_gk_off_3)
- assert out_gk_on_3.shape == out_gk_off_3.shape
-
-
- def test_less_equal_net():
- x0, y0, x1, y1, x2, y2, x3, y3 = gen_data()
- out_gk_on_0, out_gk_on_1, out_gk_on_2, out_gk_on_3 = get_less_equal_net_output(
- x0, y0, x1, y1, x2, y2, x3, y3, True)
- out_gk_off_0, out_gk_off_1, out_gk_off_2, out_gk_off_3 = get_less_equal_net_output(
- x0, y0, x1, y1, x2, y2, x3, y3, False)
-
- assert np.all(out_gk_on_0 == out_gk_off_0)
- assert out_gk_on_0.shape == out_gk_off_0.shape
- assert np.all(out_gk_on_1 == out_gk_off_1)
- assert out_gk_on_1.shape == out_gk_off_1.shape
- assert np.all(out_gk_on_2 == out_gk_off_2)
- assert out_gk_on_2.shape == out_gk_off_2.shape
- assert np.all(out_gk_on_3 == out_gk_off_3)
- assert out_gk_on_3.shape == out_gk_off_3.shape
-
-
- def test_greater_equal_net():
- x0, y0, x1, y1, x2, y2, x3, y3 = gen_data()
- out_gk_on_0, out_gk_on_1, out_gk_on_2, out_gk_on_3 = get_greater_equal_net_output(
- x0, y0, x1, y1, x2, y2, x3, y3, True)
- out_gk_off_0, out_gk_off_1, out_gk_off_2, out_gk_off_3 = get_greater_equal_net_output(
- x0, y0, x1, y1, x2, y2, x3, y3, False)
-
- assert np.all(out_gk_on_0 == out_gk_off_0)
- assert out_gk_on_0.shape == out_gk_off_0.shape
- assert np.all(out_gk_on_1 == out_gk_off_1)
- assert out_gk_on_1.shape == out_gk_off_1.shape
- assert np.all(out_gk_on_2 == out_gk_off_2)
- assert out_gk_on_2.shape == out_gk_off_2.shape
- assert np.all(out_gk_on_3 == out_gk_off_3)
- assert out_gk_on_3.shape == out_gk_off_3.shape
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_less_gpu():
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- test_less_net()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_greater_gpu():
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- test_greater_net()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_less_equal_gpu():
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- test_less_equal_net()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_greater_equal_gpu():
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- test_greater_equal_net()
|