|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import ms_function
- from mindspore.common.initializer import initializer
- from mindspore.common.parameter import Parameter
- from mindspore.ops import operations as P
- from mindspore.ops.operations import _inner_ops as inner
-
- context.set_context(device_target='GPU')
-
- class Transpose(nn.Cell):
- def __init__(self, nptype):
- super(Transpose, self).__init__()
- self.transpose = P.Transpose()
- self.x_2D = Parameter(initializer(Tensor(np.arange(5 * 6).reshape(5, 6).astype(nptype)), [5, 6]),
- name='x_2D')
- self.perm_2D = (1, 0)
- self.x_3D = Parameter(initializer(Tensor(np.arange(2 * 2 * 4).reshape(2, 2, 4).astype(nptype)), [2, 2, 4]),
- name='x_3D')
- self.perm_3D = (1, 0, 2)
- self.x_4D = Parameter(
- initializer(Tensor(np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5).astype(nptype)), [2, 3, 4, 5]),
- name='x_4D')
- self.perm_4D = (0, 1, 2, 3)
- self.x_5D = Parameter(
- initializer(Tensor(np.arange(1 * 2 * 3 * 4 * 5).reshape(1, 2, 3, 4, 5).astype(nptype)),
- [1, 2, 3, 4, 5]), name='x_5D')
- self.perm_5D = (1, 0, 3, 4, 2)
-
- @ms_function
- def construct(self):
- return (self.transpose(self.x_2D, self.perm_2D), self.transpose(self.x_3D, self.perm_3D),
- self.transpose(self.x_4D, self.perm_4D), self.transpose(self.x_5D, self.perm_5D))
-
- class Transpose_dynamic(nn.Cell):
- def __init__(self, nptype):
- super(Transpose_dynamic, self).__init__()
- self.transpose = P.Transpose()
- self.test_dynamic = inner.GpuConvertToDynamicShape()
- self.x = Parameter(
- initializer(Tensor(np.arange(1 * 2 * 3 * 4 * 5).reshape(1, 2, 3, 4, 5).astype(nptype)),
- [1, 2, 3, 4, 5]), name='5D')
- self.perm = (1, 0, 3, 4, 2)
-
- @ms_function
- def construct(self):
- out = self.test_dynamic(self.x)
- return self.transpose(out, self.perm)
-
- class Transpose_dynamic2(nn.Cell):
- def __init__(self, input_1, input_2, perm_1, perm_2):
- super(Transpose_dynamic2, self).__init__()
- self.transpose = P.Transpose()
- self.test_dynamic = inner.GpuConvertToDynamicShape()
- self.x_1 = input_1
- self.x_2 = input_2
- self.perm_1 = perm_1
- self.perm_2 = perm_2
-
- @ms_function
- def construct(self):
- out_1 = self.test_dynamic(self.x_1)
- out_1 = self.transpose(out_1, self.perm_1)
- out_2 = self.test_dynamic(self.x_2)
- out_2 = self.transpose(out_2, self.perm_2)
- return (out_1, out_2)
-
- def transpose1(nptype):
- transpose = Transpose(nptype)
- output = transpose()
- expect0 = np.array([[[0, 6, 12, 18, 24],
- [1, 7, 13, 19, 25],
- [2, 8, 14, 20, 26],
- [3, 9, 15, 21, 27],
- [4, 10, 16, 22, 28],
- [5, 11, 17, 23, 29]]]).astype(nptype)
- expect1 = np.array([[[[0, 1, 2, 3],
- [8, 9, 10, 11]],
- [[4, 5, 6, 7],
- [12, 13, 14, 15]]]]).astype(nptype)
- expect2 = np.array([[[[[0, 1, 2, 3, 4],
- [5, 6, 7, 8, 9],
- [10, 11, 12, 13, 14],
- [15, 16, 17, 18, 19]],
- [[20, 21, 22, 23, 24],
- [25, 26, 27, 28, 29],
- [30, 31, 32, 33, 34],
- [35, 36, 37, 38, 39]],
- [[40, 41, 42, 43, 44],
- [45, 46, 47, 48, 49],
- [50, 51, 52, 53, 54],
- [55, 56, 57, 58, 59]]],
- [[[60, 61, 62, 63, 64],
- [65, 66, 67, 68, 69],
- [70, 71, 72, 73, 74],
- [75, 76, 77, 78, 79]],
- [[80, 81, 82, 83, 84],
- [85, 86, 87, 88, 89],
- [90, 91, 92, 93, 94],
- [95, 96, 97, 98, 99]],
- [[100, 101, 102, 103, 104],
- [105, 106, 107, 108, 109],
- [110, 111, 112, 113, 114],
- [115, 116, 117, 118, 119]]]]]).astype(nptype)
- expect3 = np.array([[[[[[0, 20, 40],
- [1, 21, 41],
- [2, 22, 42],
- [3, 23, 43],
- [4, 24, 44]],
- [[5, 25, 45],
- [6, 26, 46],
- [7, 27, 47],
- [8, 28, 48],
- [9, 29, 49]],
- [[10, 30, 50],
- [11, 31, 51],
- [12, 32, 52],
- [13, 33, 53],
- [14, 34, 54]],
- [[15, 35, 55],
- [16, 36, 56],
- [17, 37, 57],
- [18, 38, 58],
- [19, 39, 59]]]],
- [[[[60, 80, 100],
- [61, 81, 101],
- [62, 82, 102],
- [63, 83, 103],
- [64, 84, 104]],
- [[65, 85, 105],
- [66, 86, 106],
- [67, 87, 107],
- [68, 88, 108],
- [69, 89, 109]],
- [[70, 90, 110],
- [71, 91, 111],
- [72, 92, 112],
- [73, 93, 113],
- [74, 94, 114]],
- [[75, 95, 115],
- [76, 96, 116],
- [77, 97, 117],
- [78, 98, 118],
- [79, 99, 119]]]]]]).astype(nptype)
- assert (output[0].asnumpy() == expect0).all()
- assert (output[1].asnumpy() == expect1).all()
- assert (output[2].asnumpy() == expect2).all()
- assert (output[3].asnumpy() == expect3).all()
-
- def transpose_d(nptype):
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- transpose = Transpose_dynamic(nptype)
- output = transpose()
- expect = np.array([[[[[[0, 20, 40],
- [1, 21, 41],
- [2, 22, 42],
- [3, 23, 43],
- [4, 24, 44]],
- [[5, 25, 45],
- [6, 26, 46],
- [7, 27, 47],
- [8, 28, 48],
- [9, 29, 49]],
- [[10, 30, 50],
- [11, 31, 51],
- [12, 32, 52],
- [13, 33, 53],
- [14, 34, 54]],
- [[15, 35, 55],
- [16, 36, 56],
- [17, 37, 57],
- [18, 38, 58],
- [19, 39, 59]]]],
- [[[[60, 80, 100],
- [61, 81, 101],
- [62, 82, 102],
- [63, 83, 103],
- [64, 84, 104]],
- [[65, 85, 105],
- [66, 86, 106],
- [67, 87, 107],
- [68, 88, 108],
- [69, 89, 109]],
- [[70, 90, 110],
- [71, 91, 111],
- [72, 92, 112],
- [73, 93, 113],
- [74, 94, 114]],
- [[75, 95, 115],
- [76, 96, 116],
- [77, 97, 117],
- [78, 98, 118],
- [79, 99, 119]]]]]]).astype(nptype)
- assert (output.asnumpy() == expect).all()
-
- def transpose_d2(nptype):
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- input_1 = Parameter(Tensor(np.arange(5 * 6).reshape(5, 6).astype(nptype)),
- name="input_1")
- input_2 = Parameter(Tensor(np.arange(2 * 2 * 4).reshape(2, 2, 4).astype(nptype)),
- name="input_2")
- perm_1 = (1, 0)
- perm_2 = (1, 0, 2)
- expect_1 = np.array([[[0, 6, 12, 18, 24],
- [1, 7, 13, 19, 25],
- [2, 8, 14, 20, 26],
- [3, 9, 15, 21, 27],
- [4, 10, 16, 22, 28],
- [5, 11, 17, 23, 29]]]).astype(nptype)
- expect_2 = np.array([[[[0, 1, 2, 3],
- [8, 9, 10, 11]],
- [[4, 5, 6, 7],
- [12, 13, 14, 15]]]]).astype(nptype)
- net = Transpose_dynamic2(input_1, input_2, perm_1, perm_2)
- output_1, output_2 = net()
- assert (output_1.asnumpy() == expect_1).all()
- assert (output_2.asnumpy() == expect_2).all()
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_transpose_float32():
- transpose1(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_transpose_float16():
- transpose1(np.float16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_transpose_int32():
- transpose1(np.int32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_transpose_int64():
- transpose1(np.int64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_transpose_dynamic_int64():
- transpose_d(np.int64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_transpose_dynamic_two_inputs_int64():
- transpose_d2(np.int64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_transpose_dynamic_float32():
- transpose_d(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_transpose_dynamic_float16():
- transpose_d(np.float16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_transpose_dynamic_int32():
- transpose_d(np.int32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_transpose_dynamic_two_inputs_float32():
- transpose_d2(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_transpose_dynamic_two_inputs_float16():
- transpose_d2(np.float16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_transpose_dynamic_two_inputs_int32():
- transpose_d2(np.int32)
|