|
- # Copyright 2019-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
- def strided_slice(nptype):
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
-
- x = Tensor(np.arange(0, 2*3*4*5).reshape(2, 3, 4, 5).astype(nptype))
- y = P.StridedSlice()(x, (1, 0, 0, 2), (2, 2, 2, 4), (1, 1, 1, 1))
- expect = np.array([[[[62, 63],
- [67, 68]],
- [[82, 83],
- [87, 88]]]]).astype(nptype)
- assert np.allclose(y.asnumpy(), expect)
-
- y = P.StridedSlice()(x, (1, 0, 0, 5), (2, 2, 2, 1), (1, 1, 1, -2))
- expect = np.array([[[[64, 62],
- [69, 67]],
- [[84, 82],
- [89, 87]]]]).astype(nptype)
- assert np.allclose(y.asnumpy(), expect)
-
- y = P.StridedSlice()(x, (1, 0, 0, -1), (2, 2, 2, 1), (1, 1, 1, -1))
- expect = np.array([[[[64, 63, 62],
- [69, 68, 67]],
- [[84, 83, 82],
- [89, 88, 87]]]]).astype(nptype)
- assert np.allclose(y.asnumpy(), expect)
-
- y = P.StridedSlice()(x, (1, 0, -1, -2), (2, 2, 0, -5), (1, 1, -1, -2))
- expect = np.array([[[[78, 76],
- [73, 71],
- [68, 66]],
- [[98, 96],
- [93, 91],
- [88, 86]]]]).astype(nptype)
- assert np.allclose(y.asnumpy(), expect)
-
- # ME Infer fault
- # y = P.StridedSlice(begin_mask=0b1000, end_mask=0b0010)(x, (1, 0, 0, 2), (2, 2, 2, 4), (1, 1, 1, 1))
- # expect = np.array([[[[62, 63],
- # [67, 68]],
- # [[82, 83],
- # [87, 88]],
- # [[102, 103],
- # [107, 108]]]]).astype(nptype)
- # assert np.allclose(y.asnumpy(), expect)
-
- op = P.StridedSlice(begin_mask=0b1000, end_mask=0b0010, ellipsis_mask=0b0100)
- y = op(x, (1, 0, 0, 2), (2, 2, 2, 4), (1, 1, 1, 1))
- expect = np.array([[[[60, 61, 62, 63],
- [65, 66, 67, 68],
- [70, 71, 72, 73],
- [75, 76, 77, 78]],
- [[80, 81, 82, 83],
- [85, 86, 87, 88],
- [90, 91, 92, 93],
- [95, 96, 97, 98]],
- [[100, 101, 102, 103],
- [105, 106, 107, 108],
- [110, 111, 112, 113],
- [115, 116, 117, 118]]]]).astype(nptype)
- assert np.allclose(y.asnumpy(), expect)
-
- x = Tensor(np.arange(0, 3*4*5).reshape(3, 4, 5).astype(nptype))
- y = P.StridedSlice()(x, (1, 0, 0), (2, -3, 3), (1, 1, 3))
- expect = np.array([[[20]]]).astype(nptype)
- assert np.allclose(y.asnumpy(), expect)
-
- x_np = np.arange(0, 4*5).reshape(4, 5).astype(nptype)
- y = Tensor(x_np)[:, ::-1]
- expect = x_np[:, ::-1]
- assert np.allclose(y.asnumpy(), expect)
-
- x = Tensor(np.arange(0, 2 * 3 * 4 * 5 * 4 * 3 * 2).reshape(2, 3, 4, 5, 4, 3, 2).astype(nptype))
- y = P.StridedSlice()(x, (1, 0, 0, 2, 1, 2, 0), (2, 2, 2, 4, 2, 3, 2), (1, 1, 1, 1, 1, 1, 2))
- expect = np.array([[[[[[[1498.]]],
- [[[1522.]]]],
- [[[[1618.]]],
- [[[1642.]]]]],
- [[[[[1978.]]],
- [[[2002.]]]],
- [[[[2098.]]],
- [[[2122.]]]]]]]).astype(nptype)
- assert np.allclose(y.asnumpy(), expect)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_strided_slice_float64():
- strided_slice(np.float64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_strided_slice_float32():
- strided_slice(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_strided_slice_float16():
- strided_slice(np.float16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_strided_slice_int64():
- strided_slice(np.int64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_strided_slice_int32():
- strided_slice(np.int32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_strided_slice_int16():
- strided_slice(np.int16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_strided_slice_int8():
- strided_slice(np.int8)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_strided_slice_uint64():
- strided_slice(np.uint64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_strided_slice_uint32():
- strided_slice(np.uint32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_strided_slice_uint16():
- strided_slice(np.uint16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_strided_slice_uint8():
- strided_slice(np.uint8)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_strided_slice_bool():
- strided_slice(np.bool)
- x = Tensor(np.arange(0, 4*4*4).reshape(4, 4, 4).astype(np.float32))
- y = x[-8:, :8]
- expect = np.array([[[0., 1., 2., 3.],
- [4., 5., 6., 7.],
- [8., 9., 10., 11.],
- [12., 13., 14., 15.]],
-
- [[16., 17., 18., 19.],
- [20., 21., 22., 23.],
- [24., 25., 26., 27.],
- [28., 29., 30., 31.]],
-
- [[32., 33., 34., 35.],
- [36., 37., 38., 39.],
- [40., 41., 42., 43.],
- [44., 45., 46., 47.]],
-
- [[48., 49., 50., 51.],
- [52., 53., 54., 55.],
- [56., 57., 58., 59.],
- [60., 61., 62., 63.]]])
- assert np.allclose(y.asnumpy(), expect)
|