|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops.operations import _inner_ops as inner
- from mindspore.ops import operations as P
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_square_normal():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- x_np = np.random.rand(2, 3, 4, 4).astype(np.float32)
- output_ms = P.Square()(Tensor(x_np))
- output_np = np.square(x_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
- x_np = np.random.rand(2, 3, 1, 5, 4, 4).astype(np.float32)
- output_ms = P.Square()(Tensor(x_np))
- output_np = np.square(x_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
- x_np = np.random.rand(2,).astype(np.float32)
- output_ms = P.Square()(Tensor(x_np))
- output_np = np.square(x_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
-
- # Dynamic Shape Testing
- class SqaureNetDynamic(nn.Cell):
- def __init__(self):
- super(SqaureNetDynamic, self).__init__()
- self.square = P.Square()
- self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape()
-
- def construct(self, x):
- x_dyn = self.gpu_convert_to_dynamic_shape(x)
- return self.square(x_dyn)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_square_dynamic():
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = SqaureNetDynamic()
- x_np = np.random.rand(1, 3, 4, 4, 1).astype(np.float32)
- output_ms = net(Tensor(x_np))
- output_np = np.square(x_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
- x_np = np.random.rand(2, 3, 4, 4, 8, 9).astype(np.float16)
- output_ms = net(Tensor(x_np))
- output_np = np.square(x_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
- x_np = np.random.rand(1).astype(np.float32)
- output_ms = net(Tensor(x_np))
- output_np = np.square(x_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
|