|
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
-
- import mindspore.context as context
- from mindspore import Tensor
- import mindspore.nn as nn
- from mindspore.ops.operations import _inner_ops as inner
- from mindspore.ops import operations as P
-
-
- class Net(nn.Cell):
- def __init__(self, axis=0, out_nums=1):
- super(Net, self).__init__()
- self.split = P.Split(axis, out_nums)
-
- def construct(self, x):
- return self.split(x)
-
-
- class NetDynamic(nn.Cell):
- def __init__(self, axis=0, out_nums=1):
- super(NetDynamic, self).__init__()
- self.conv = inner.GpuConvertToDynamicShape()
- self.split = P.Split(axis, out_nums)
-
- def construct(self, x):
- x_conv = self.conv(x)
- x_split = self.split(x_conv)
- return x_split
-
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
-
- def split_basic(nptype):
- x = np.array([[[1, -1, 1], [2, -2, 2]],
- [[3, -3, 3], [4, -4, 4]],
- [[5, -5, 5], [6, -6, 6]]]).astype(nptype)
-
- split_op = Net(0, 3)
- outputs = split_op(Tensor(x))
- for i, out in enumerate(outputs):
- assert (out.asnumpy() == x[i]).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_split_basic_float16():
- split_basic(np.float16)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_split_basic_float32():
- split_basic(np.float32)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_split_basic_float64():
- split_basic(np.float64)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_split_basic_int32():
- split_basic(np.int32)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_split_basic_uint32():
- split_basic(np.uint32)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_split_basic_int64():
- split_basic(np.int64)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_split_basic_bool():
- split_basic(np.bool)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_split_4d():
- x_np = np.random.randn(2, 6, 4, 4).astype(np.float32)
- y = np.split(x_np, 3, axis=1)
-
- split_op = Net(1, 3)
- outputs = split_op(Tensor(x_np))
-
- for i, out in enumerate(outputs):
- assert (out.asnumpy() == y[i]).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_split_dynamic():
- x = np.array([[[1, -1, 1], [2, -2, 2]],
- [[3, -3, 3], [4, -4, 4]],
- [[5, -5, 5], [6, -6, 6]]]).astype(np.float32)
-
- net = NetDynamic(0, 3)
- x_split = net(Tensor(x))
- for i, out in enumerate(x_split):
- assert (out.asnumpy() == x[i]).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_split_dynamic_axis1():
- x = np.array([[[1, -1, 1], [2, -2, 2]],
- [[3, -3, 3], [4, -4, 4]],
- [[5, -5, 5], [6, -6, 6]]]).astype(np.int32)
- y = np.split(x, 2, axis=1)
-
- net = NetDynamic(1, 2)
- x_split = net(Tensor(x))
- for i, out in enumerate(x_split):
- assert (out.asnumpy() == y[i]).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_split_dynamic_axis2():
- x = np.array([[[1, -1, 1], [2, -2, 2]],
- [[3, -3, 3], [4, -4, 4]],
- [[5, -5, 5], [6, -6, 6]]]).astype(np.int32)
- y = np.split(x, 3, axis=2)
-
- net = NetDynamic(2, 3)
- x_split = net(Tensor(x))
- for i, out in enumerate(x_split):
- assert (out.asnumpy() == y[i]).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_split_invalid_input():
- with pytest.raises(TypeError):
- _ = Net(0.1, 3)
-
- with pytest.raises(TypeError):
- _ = Net(0, 3.0)
-
- with pytest.raises(ValueError):
- _ = Net(0, -3)
-
- x = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.int32)
- split_net = Net(2, 2)
- with pytest.raises(ValueError):
- _ = split_net(Tensor(x))
-
- with pytest.raises(TypeError):
- _ = split_net(x)
|