|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
- from mindspore.ops import composite as C
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
-
- class Net(nn.Cell):
- def __init__(self, sample, replacement, seed=0):
- super(Net, self).__init__()
- self.sample = sample
- self.replacement = replacement
- self.seed = seed
-
- def construct(self, x):
- return C.multinomial(x, self.sample, self.replacement, self.seed)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_multinomial():
- x0 = Tensor(np.array([0.9, 0.2]).astype(np.float32))
- x1 = Tensor(np.array([[0.9, 0.2], [0.9, 0.2]]).astype(np.float32))
- net0 = Net(1, True, 20)
- net1 = Net(2, True, 20)
- net2 = Net(6, True, 20)
- out0 = net0(x0)
- out1 = net1(x0)
- out2 = net2(x1)
- assert out0.asnumpy().shape == (1,)
- assert out1.asnumpy().shape == (2,)
- assert out2.asnumpy().shape == (2, 6)
|