|
- # Copyright 2019-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
- from mindspore.ops.operations import _inner_ops as inner
-
- class NetMul(nn.Cell):
- def __init__(self):
- super(NetMul, self).__init__()
- self.mul = P.Mul()
-
- def construct(self, x, y):
- return self.mul(x, y)
-
-
- def mul(nptype):
- x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
- y0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
- x1_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
- y1_np = np.random.uniform(-2, 2, (2, 1, 4, 4)).astype(nptype)
- x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(nptype)
- y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
- x3_np = np.random.uniform(-2, 2, 1).astype(nptype)
- y3_np = np.random.uniform(-2, 2, 1).astype(nptype)
- x4_np = np.array(78).astype(nptype)
- y4_np = np.array(37.5).astype(nptype)
-
- x0 = Tensor(x0_np)
- y0 = Tensor(y0_np)
- x1 = Tensor(x1_np)
- y1 = Tensor(y1_np)
- x2 = Tensor(x2_np)
- y2 = Tensor(y2_np)
- x3 = Tensor(x3_np)
- y3 = Tensor(y3_np)
- x4 = Tensor(x4_np)
- y4 = Tensor(y4_np)
-
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- mul_net = NetMul()
- output0 = mul_net(x0, y0)
- expect0 = np.multiply(x0_np, y0_np)
- diff0 = output0.asnumpy() - expect0
- error0 = np.ones(shape=expect0.shape) * 1.0e-5
- assert np.all(diff0 < error0)
- assert output0.shape == expect0.shape
-
- output1 = mul_net(x1, y1)
- expect1 = np.multiply(x1_np, y1_np)
- diff1 = output1.asnumpy() - expect1
- error1 = np.ones(shape=expect1.shape) * 1.0e-5
- assert np.all(diff1 < error1)
- assert output1.shape == expect1.shape
-
- output2 = mul_net(x2, y2)
- expect2 = np.multiply(x2_np, y2_np)
- diff2 = output2.asnumpy() - expect2
- error2 = np.ones(shape=expect2.shape) * 1.0e-5
- assert np.all(diff2 < error2)
- assert output2.shape == expect2.shape
-
- output3 = mul_net(x3, y3)
- expect3 = np.multiply(x3_np, y3_np)
- diff3 = output3.asnumpy() - expect3
- error3 = np.ones(shape=expect3.shape) * 1.0e-5
- assert np.all(diff3 < error3)
- assert output3.shape == expect3.shape
-
- output4 = mul_net(x4, y4)
- expect4 = np.multiply(x4_np, y4_np)
- diff4 = output4.asnumpy() - expect4
- error4 = np.ones(shape=expect4.shape) * 1.0e-5
- assert np.all(diff4 < error4)
- assert output4.shape == expect4.shape
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- mul_net = NetMul()
- output0 = mul_net(x0, y0)
- expect0 = np.multiply(x0_np, y0_np)
- diff0 = output0.asnumpy() - expect0
- error0 = np.ones(shape=expect0.shape) * 1.0e-5
- assert np.all(diff0 < error0)
- assert output0.shape == expect0.shape
-
- output1 = mul_net(x1, y1)
- expect1 = np.multiply(x1_np, y1_np)
- diff1 = output1.asnumpy() - expect1
- error1 = np.ones(shape=expect1.shape) * 1.0e-5
- assert np.all(diff1 < error1)
- assert output1.shape == expect1.shape
-
- output2 = mul_net(x2, y2)
- expect2 = np.multiply(x2_np, y2_np)
- diff2 = output2.asnumpy() - expect2
- error2 = np.ones(shape=expect2.shape) * 1.0e-5
- assert np.all(diff2 < error2)
- assert output2.shape == expect2.shape
-
- output3 = mul_net(x3, y3)
- expect3 = np.multiply(x3_np, y3_np)
- diff3 = output3.asnumpy() - expect3
- error3 = np.ones(shape=expect3.shape) * 1.0e-5
- assert np.all(diff3 < error3)
- assert output3.shape == expect3.shape
-
- output4 = mul_net(x4, y4)
- expect4 = np.multiply(x4_np, y4_np)
- diff4 = output4.asnumpy() - expect4
- error4 = np.ones(shape=expect4.shape) * 1.0e-5
- assert np.all(diff4 < error4)
- assert output4.shape == expect4.shape
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_mul_float64():
- mul(np.float64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_mul_float32():
- mul(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_mul_float16():
- mul(np.float16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_mul_int64():
- mul(np.int64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_mul_int32():
- mul(np.int32)
-
- class NetMul_dynamic(nn.Cell):
- def __init__(self):
- super(NetMul_dynamic, self).__init__()
- self.mul = P.Mul()
- self.test_dynamic = inner.GpuConvertToDynamicShape()
-
- def construct(self, x, y):
- x = self.test_dynamic(x)
- y = self.test_dynamic(y)
- out = self.mul(x, y)
- return out
-
-
- def mul_dynamic(nptype):
- x1_np = np.array([78]).astype(nptype)
- y1_np = np.array([37.5]).astype(nptype)
- x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(nptype)
- y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
-
- x1 = Tensor(x1_np)
- y1 = Tensor(y1_np)
- x2 = Tensor(x2_np)
- y2 = Tensor(y2_np)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
- mul_net = NetMul_dynamic()
-
- output1 = mul_net(x1, y1)
- output2 = mul_net(x2, y2)
- expect1 = np.multiply(x1_np, y1_np)
- expect2 = np.multiply(x2_np, y2_np)
- diff1 = output1.asnumpy() - expect1
- diff2 = output2.asnumpy() - expect2
- error1 = np.ones(shape=expect1.shape) * 1.0e-5
- assert np.all(diff1 < error1)
- assert output1.shape == expect1.shape
- error2 = np.ones(shape=expect2.shape) * 1.0e-5
- assert np.all(diff2 < error2)
- assert output2.shape == expect2.shape
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_mul_dynamic_float64():
- mul_dynamic(np.float64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_mul_dynamic_float32():
- mul_dynamic(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_mul_dynamic_float16():
- mul_dynamic(np.float16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_mul_dynamic_int64():
- mul_dynamic(np.int64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_mul_dynamic_int32():
- mul_dynamic(np.int32)
|