|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.initializer import initializer
- from mindspore.nn import Dense
- from mindspore.nn import TrainOneStepCell, WithLossCell
- from mindspore.nn.optim import Momentum
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
-
- class NetMomentum(nn.Cell):
- def __init__(self):
- super(NetMomentum, self).__init__()
- self.batch_size = 1
- self.reshape = P.Reshape()
- weight = Tensor(np.ones([10, 16]).astype(np.float32) * 0.01)
- self.fc1 = Dense(16, 10, weight_init=weight)
-
- def construct(self, input_x):
- output = self.reshape(input_x, (self.batch_size, -1))
- output = self.fc1(output)
- return output
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_momentum():
- epoch = 3
- net = NetMomentum()
- learning_rate = initializer(Tensor(np.array([0.01]).astype(np.float32)), [1])
- momentum = 0.9
-
- optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
- criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
- net_with_criterion = WithLossCell(net, criterion)
- train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
- train_network.set_train()
- losses = []
- for _ in range(epoch):
- data = Tensor(np.arange(0, 16).reshape(1, 1, 4, 4).astype(np.float32) * 0.01)
- label = Tensor(np.array([0]).astype(np.int32))
- loss = train_network(data, label)
- losses.append(loss)
-
- _ = np.ones(shape=[1, 10]) * 1.0e-6
-
- return losses
|