|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- import mindspore as ms
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
-
- class L2LossNet(nn.Cell):
- def __init__(self):
- super(L2LossNet, self).__init__()
- self.l2_loss = P.L2Loss()
-
- def construct(self, x):
- return self.l2_loss(x)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gather_pynative_fp32_22():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- error = 1e-4
- x = Tensor(np.array([[1., 2.], [3., 4.]]), ms.float32)
- expect = np.array(15, np.float32)
- output = P.L2Loss()(x)
- diff = output.asnumpy() - expect
- assert np.all(diff < error)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gather_pynative_fp16_22():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- error = 1e-4
- x = Tensor(np.array([[1., 2.], [3., 4.]]), ms.float16)
- expect = np.array(15, np.float16)
- output = P.L2Loss()(x)
- diff = output.asnumpy() - expect
- assert np.all(diff < error)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gather_pynative_fp32_14():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- error = 1e-4
- x = Tensor(np.array([1., 2., 3., 4.]), ms.float32)
- expect = np.array(15, np.float32)
- output = P.L2Loss()(x)
- diff = output.asnumpy() - expect
- assert np.all(diff < error)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gather_pynative_fp16_14():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- error = 1e-4
- x = Tensor(np.array([1., 2., 3., 4.]), ms.float16)
- expect = np.array(15, np.float16)
- output = P.L2Loss()(x)
- diff = output.asnumpy() - expect
- assert np.all(diff < error)
-
- def test_gather_graph_fp32_14():
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- error = 1e-4
- x = Tensor(np.array([1., 2., 3., 4.]), ms.float32)
- expect = np.array(15, np.float32)
- l2_loss = L2LossNet()
- output = l2_loss(x)
- diff = output.asnumpy() - expect
- assert np.all(diff < error)
-
- def test_gather_graph_fp16_14():
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- error = 1e-4
- x = Tensor(np.array([1., 2., 3., 4.]), ms.float16)
- expect = np.array(15, np.float16)
- l2_loss = L2LossNet()
- output = l2_loss(x)
- diff = output.asnumpy() - expect
- assert np.all(diff < error)
|