|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
- from mindspore.ops.composite import GradOperation
- from mindspore.ops.operations import _inner_ops as inner
-
- class Grad(nn.Cell):
- def __init__(self, network):
- super(Grad, self).__init__()
- self.grad = GradOperation(get_all=True, sens_param=True)
- self.network = network
-
- def construct(self, input_x, dout):
- return self.grad(self.network)(input_x, dout)
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.HSigmoid = P.HSigmoid()
-
- def construct(self, x):
- return self.HSigmoid(x)
-
-
- class DynamicNet(nn.Cell):
- def __init__(self):
- super(DynamicNet, self).__init__()
- self.HSigmoid = P.HSigmoid()
- self.d = inner.GpuConvertToDynamicShape()
-
- def construct(self, x):
- x = self.d(x)
- return self.HSigmoid(x)
-
-
- def generate_testcases(nptype):
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- x = np.array([-1, -2, 0, 2, 1]).astype(nptype)
- net = Net()
- output = net(Tensor(x))
- expect = np.array([0.33333334, 0.16666667, 0.5, 0.8333333, 0.6666667]).astype(nptype)
- np.testing.assert_almost_equal(output.asnumpy(), expect)
-
- sens = np.array([-1.45, -2.63, 0.34, 6.43, 34.6]).astype(nptype)
- backward_net = Grad(Net())
- output = backward_net(Tensor(x), Tensor(sens))
- expect = np.array([0, 0, 5.66666685e-02, 0, 0]).astype(nptype)
- np.testing.assert_almost_equal(output[0].asnumpy(), expect)
-
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- x = np.array([-1, -2, 0, 2, 1]).astype(nptype)
- net = Net()
- output = net(Tensor(x))
- expect = np.array([0.33333334, 0.16666667, 0.5, 0.8333333, 0.6666667]).astype(nptype)
- np.testing.assert_almost_equal(output.asnumpy(), expect)
-
- sens = np.array([-1.45, -2.63, 0.34, 6.43, 34.6]).astype(nptype)
- backward_net = Grad(Net())
- output = backward_net(Tensor(x), Tensor(sens))
- expect = np.array([0, 0, 5.66666685e-02, 0, 0]).astype(nptype)
- np.testing.assert_almost_equal(output[0].asnumpy(), expect)
-
-
- def generate_dynamic_testcase(nptype):
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- x = np.array([-1, -2, 0, 2, 1]).astype(nptype)
- net = DynamicNet()
- output = net(Tensor(x))
- expect = np.array([0.33333334, 0.16666667, 0.5, 0.8333333, 0.6666667]).astype(nptype)
- np.testing.assert_almost_equal(output.asnumpy(), expect)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_hsigmoid_dynamic_float32():
- generate_dynamic_testcase(np.float32)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_hsigmoid_float32():
- generate_testcases(np.float32)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_hsigmoid_float16():
- generate_testcases(np.float16)
|