|
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
- from mindspore import Tensor
- from mindspore.ops import operations as P
- import mindspore.nn as nn
- import mindspore.context as context
-
- class GatherNdNet(nn.Cell):
- def __init__(self):
- super(GatherNdNet, self).__init__()
- self.gathernd = P.GatherNd()
-
- def construct(self, x, indices):
- return self.gathernd(x, indices)
-
-
- def gathernd0(nptype):
- x = Tensor(np.arange(3 * 2, dtype=nptype).reshape(3, 2))
- indices = Tensor(np.array([[1, 1], [0, 1]]).astype(np.int32))
- expect = np.array([3, 1]).astype(nptype)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- gathernd = GatherNdNet()
- output = gathernd(x, indices)
-
- assert np.array_equal(output.asnumpy(), expect)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd0_float64():
- gathernd0(np.float64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd0_float32():
- gathernd0(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd0_float16():
- gathernd0(np.float16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd0_int32():
- gathernd0(np.int32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd0_int16():
- gathernd0(np.int16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd0_uint8():
- gathernd0(np.uint8)
-
- def gathernd1(nptype):
- x = Tensor(np.arange(2 * 3 * 4 * 5, dtype=nptype).reshape(2, 3, 4, 5))
- indices = Tensor(np.array([[[[[l, k, j, i] for i in [1, 3, 4]] for j in range(4)]
- for k in range(3)] for l in range(2)], dtype='i4'))
- expect = np.array([[[[1., 3., 4.],
- [6., 8., 9.],
- [11., 13., 14.],
- [16., 18., 19.]],
-
- [[21., 23., 24.],
- [26., 28., 29.],
- [31., 33., 34.],
- [36., 38., 39.]],
-
- [[41., 43., 44.],
- [46., 48., 49.],
- [51., 53., 54.],
- [56., 58., 59.]]],
-
- [[[61., 63., 64.],
- [66., 68., 69.],
- [71., 73., 74.],
- [76., 78., 79.]],
-
- [[81., 83., 84.],
- [86., 88., 89.],
- [91., 93., 94.],
- [96., 98., 99.]],
-
- [[101., 103., 104.],
- [106., 108., 109.],
- [111., 113., 114.],
- [116., 118., 119.]]]]).astype(nptype)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- gather = GatherNdNet()
- output = gather(x, indices)
-
- assert np.array_equal(output.asnumpy(), expect)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd1_float64():
- gathernd1(np.float64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd1_float32():
- gathernd1(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd1_float16():
- gathernd1(np.float16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd1_int32():
- gathernd1(np.int32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd1_int16():
- gathernd1(np.int16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd1_uint8():
- gathernd1(np.uint8)
-
- def gathernd2(nptype):
- x = Tensor(np.array([[4., 5., 4., 1., 5.],
- [4., 9., 5., 6., 4.],
- [9., 8., 4., 3., 6.],
- [0., 4., 2., 2., 8.],
- [1., 8., 6., 2., 8.],
- [8., 1., 9., 7., 3.],
- [7., 9., 2., 5., 7.],
- [9., 8., 6., 8., 5.],
- [3., 7., 2., 7., 4.],
- [4., 2., 8., 2., 9.]]).astype(np.float16))
-
- indices = Tensor(np.array([[4000], [1], [300000]]).astype(np.int32))
- expect = np.array([[0., 0., 0., 0., 0.],
- [4., 9., 5., 6., 4.],
- [0., 0., 0., 0., 0.]])
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- gathernd = GatherNdNet()
- output = gathernd(x, indices)
-
- assert np.array_equal(output.asnumpy(), expect)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd2_float64():
- gathernd2(np.float64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd2_float32():
- gathernd2(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd2_float16():
- gathernd2(np.float16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd2_int32():
- gathernd2(np.int32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd2_int16():
- gathernd2(np.int16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd2_uint8():
- gathernd2(np.uint8)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd_bool():
- x = Tensor(np.array([[True, False], [False, False]]).astype(np.bool))
- indices = Tensor(np.array([[0, 0], [0, 1], [1, 0], [1, 1]]).astype(np.int32))
- expect = np.array([True, False, False, False]).astype(np.bool)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- gathernd = GatherNdNet()
- output = gathernd(x, indices)
-
- assert np.array_equal(output.asnumpy(), expect)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd_indices_int64():
- x = Tensor(np.array([[True, False], [False, False]]).astype(np.bool))
- indices = Tensor(np.array([[0, 0], [0, 1], [1, 0], [1, 1]]).astype(np.int64))
- expect = np.array([True, False, False, False]).astype(np.bool)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- gathernd = GatherNdNet()
- output = gathernd(x, indices)
-
- assert np.array_equal(output.asnumpy(), expect)
|