|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
-
- class NetEqualCount(nn.Cell):
- def __init__(self):
- super(NetEqualCount, self).__init__()
- self.equalcount = P.EqualCount()
-
- def construct(self, x, y):
- return self.equalcount(x, y)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_equalcount():
- x = Tensor(np.array([1, 20, 5]).astype(np.int32))
- y = Tensor(np.array([2, 20, 5]).astype(np.int32))
- expect = np.array([2]).astype(np.int32)
-
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- equal_count = NetEqualCount()
- output = equal_count(x, y)
- assert (output.asnumpy() == expect).all()
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- equal_count = NetEqualCount()
- output = equal_count(x, y)
- assert (output.asnumpy() == expect).all()
|