|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- from mindspore.common.tensor import Tensor
- from mindspore.nn import Cell
- from mindspore.ops import operations as P
- from mindspore.ops.operations import _inner_ops as inner
-
-
- class NetEqual(Cell):
- def __init__(self):
- super(NetEqual, self).__init__()
- self.Equal = P.Equal()
-
- def construct(self, x, y):
- return self.Equal(x, y)
-
- class NetEqualDynamic(Cell):
- def __init__(self):
- super(NetEqualDynamic, self).__init__()
- self.conv = inner.GpuConvertToDynamicShape()
- self.Equal = P.Equal()
-
- def construct(self, x, y):
- x_conv = self.conv(x)
- y_conv = self.conv(y)
- return self.Equal(x_conv, y_conv)
-
- class NetNotEqual(Cell):
- def __init__(self):
- super(NetNotEqual, self).__init__()
- self.NotEqual = P.NotEqual()
-
- def construct(self, x, y):
- return self.NotEqual(x, y)
-
- class NetGreaterEqual(Cell):
- def __init__(self):
- super(NetGreaterEqual, self).__init__()
- self.GreaterEqual = P.GreaterEqual()
-
- def construct(self, x, y):
- return self.GreaterEqual(x, y)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_equal():
- x0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32)
- x0 = Tensor(x0_np)
- y0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32)
- y0 = Tensor(y0_np)
- expect0 = np.equal(x0_np, y0_np)
- x1_np = np.array([0, 1, 3]).astype(np.float32)
- x1 = Tensor(x1_np)
- y1_np = np.array([0, 1, -3]).astype(np.float32)
- y1 = Tensor(y1_np)
- expect1 = np.equal(x1_np, y1_np)
- x2_np = np.array([0, 1, 3]).astype(np.int32)
- x2 = Tensor(x2_np)
- y2_np = np.array([0, 1, -3]).astype(np.int32)
- y2 = Tensor(y2_np)
- expect2 = np.equal(x2_np, y2_np)
- x3_np = np.array([0, 1, 3]).astype(np.int16)
- x3 = Tensor(x3_np)
- y3_np = np.array([0, 1, -3]).astype(np.int16)
- y3 = Tensor(y3_np)
- expect3 = np.equal(x3_np, y3_np)
- x4_np = np.array([0, 1, 4]).astype(np.uint8)
- x4 = Tensor(x4_np)
- y4_np = np.array([0, 1, 3]).astype(np.uint8)
- y4 = Tensor(y4_np)
- expect4 = np.equal(x4_np, y4_np)
- x5_np = np.array([True, False, True]).astype(bool)
- x5 = Tensor(x5_np)
- y5_np = np.array([True, False, False]).astype(bool)
- y5 = Tensor(y5_np)
- expect5 = np.equal(x5_np, y5_np)
- x6_np = np.array([0, 1, 4]).astype(np.int8)
- x6 = Tensor(x4_np)
- y6_np = np.array([0, 1, 3]).astype(np.int8)
- y6 = Tensor(y4_np)
- expect6 = np.equal(x6_np, y6_np)
- x7_np = np.array([0, 1, 4]).astype(np.int64)
- x7 = Tensor(x4_np)
- y7_np = np.array([0, 1, 3]).astype(np.int64)
- y7 = Tensor(y4_np)
- expect7 = np.equal(x7_np, y7_np)
- x8_np = np.array([0, 1, 4]).astype(np.float16)
- x8 = Tensor(x4_np)
- y8_np = np.array([0, 1, 3]).astype(np.float16)
- y8 = Tensor(y4_np)
- expect8 = np.equal(x8_np, y8_np)
-
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- equal = NetEqual()
- output0 = equal(x0, y0)
- assert np.all(output0.asnumpy() == expect0)
- assert output0.shape == expect0.shape
- output1 = equal(x1, y1)
- assert np.all(output1.asnumpy() == expect1)
- assert output1.shape == expect1.shape
- output2 = equal(x2, y2)
- assert np.all(output2.asnumpy() == expect2)
- assert output2.shape == expect2.shape
- output3 = equal(x3, y3)
- assert np.all(output3.asnumpy() == expect3)
- assert output3.shape == expect3.shape
- output4 = equal(x4, y4)
- assert np.all(output4.asnumpy() == expect4)
- assert output4.shape == expect4.shape
- output5 = equal(x5, y5)
- assert np.all(output5.asnumpy() == expect5)
- assert output5.shape == expect5.shape
-
-
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- equal = NetEqual()
- output0 = equal(x0, y0)
- assert np.all(output0.asnumpy() == expect0)
- assert output0.shape == expect0.shape
- output1 = equal(x1, y1)
- assert np.all(output1.asnumpy() == expect1)
- assert output1.shape == expect1.shape
- output2 = equal(x2, y2)
- assert np.all(output2.asnumpy() == expect2)
- assert output2.shape == expect2.shape
- output3 = equal(x3, y3)
- assert np.all(output3.asnumpy() == expect3)
- assert output3.shape == expect3.shape
- output4 = equal(x4, y4)
- assert np.all(output4.asnumpy() == expect4)
- assert output4.shape == expect4.shape
- output5 = equal(x5, y5)
- assert np.all(output5.asnumpy() == expect5)
- assert output5.shape == expect5.shape
- output6 = equal(x6, y6)
- assert np.all(output6.asnumpy() == expect6)
- assert output6.shape == expect6.shape
- output7 = equal(x7, y7)
- assert np.all(output7.asnumpy() == expect7)
- assert output7.shape == expect7.shape
- output8 = equal(x8, y8)
- assert np.all(output8.asnumpy() == expect8)
- assert output8.shape == expect8.shape
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_notequal():
- x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32))
- y0 = Tensor(np.array([[1, 2]]).astype(np.float32))
- expect0 = np.array([[True, True], [False, True]])
- x1 = Tensor(np.array([[2, 1], [1, 1]]).astype(np.int16))
- y1 = Tensor(np.array([[1, 2]]).astype(np.int16))
- expect1 = np.array([[True, True], [False, True]])
- x2 = Tensor(np.array([[2, 1], [1, 2]]).astype(np.uint8))
- y2 = Tensor(np.array([[1, 2]]).astype(np.uint8))
- expect2 = np.array([[True, True], [False, False]])
- x3 = Tensor(np.array([[False, True], [True, False]]).astype(bool))
- y3 = Tensor(np.array([[True, False]]).astype(bool))
- expect3 = np.array([[True, True], [False, False]])
-
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- notequal = NetNotEqual()
- output0 = notequal(x0, y0)
- assert np.all(output0.asnumpy() == expect0)
- assert output0.shape == expect0.shape
- output1 = notequal(x1, y1)
- assert np.all(output1.asnumpy() == expect1)
- assert output1.shape == expect1.shape
- output2 = notequal(x2, y2)
- assert np.all(output2.asnumpy() == expect2)
- assert output2.shape == expect2.shape
- output3 = notequal(x3, y3)
- assert np.all(output3.asnumpy() == expect3)
- assert output3.shape == expect3.shape
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- notequal = NetNotEqual()
- output0 = notequal(x0, y0)
- assert np.all(output0.asnumpy() == expect0)
- assert output0.shape == expect0.shape
- output1 = notequal(x1, y1)
- assert np.all(output1.asnumpy() == expect1)
- assert output1.shape == expect1.shape
- output2 = notequal(x2, y2)
- assert np.all(output2.asnumpy() == expect2)
- assert output2.shape == expect2.shape
- output3 = notequal(x3, y3)
- assert np.all(output3.asnumpy() == expect3)
- assert output3.shape == expect3.shape
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_greaterqual():
- x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32))
- y0 = Tensor(np.array([[1, 2]]).astype(np.float32))
- expect0 = np.array([[True, False], [True, False]])
- x1 = Tensor(np.array([[2, 1], [1, 1]]).astype(np.int16))
- y1 = Tensor(np.array([[1, 2]]).astype(np.int16))
- expect1 = np.array([[True, False], [True, False]])
- x2 = Tensor(np.array([[2, 1], [1, 2]]).astype(np.uint8))
- y2 = Tensor(np.array([[1, 2]]).astype(np.uint8))
- expect2 = np.array([[True, False], [True, True]])
-
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- gequal = NetGreaterEqual()
- output0 = gequal(x0, y0)
- assert np.all(output0.asnumpy() == expect0)
- assert output0.shape == expect0.shape
- output1 = gequal(x1, y1)
- assert np.all(output1.asnumpy() == expect1)
- assert output1.shape == expect1.shape
- output2 = gequal(x2, y2)
- assert np.all(output2.asnumpy() == expect2)
- assert output2.shape == expect2.shape
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- gequal = NetGreaterEqual()
- output0 = gequal(x0, y0)
- assert np.all(output0.asnumpy() == expect0)
- assert output0.shape == expect0.shape
- output1 = gequal(x1, y1)
- assert np.all(output1.asnumpy() == expect1)
- assert output1.shape == expect1.shape
- output2 = gequal(x2, y2)
- assert np.all(output2.asnumpy() == expect2)
- assert output2.shape == expect2.shape
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_equal_dynamic_shape():
- x0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32)
- x0 = Tensor(x0_np)
- y0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32)
- y0 = Tensor(y0_np)
- expect0 = np.equal(x0_np, y0_np)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- equal = NetEqualDynamic()
- output0 = equal(x0, y0)
- assert np.all(output0.asnumpy() == expect0)
- assert output0.shape == expect0.shape
|