|
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
-
- import mindspore.nn as nn
- from mindspore import Tensor
- import mindspore.context as context
- from mindspore.ops import operations as P
- from mindspore.ops.operations import _inner_ops as inner
-
- class Net(nn.Cell):
- def __init__(self, keep_prob):
- super(Net, self).__init__()
- self.drop = P.Dropout(keep_prob)
-
- def construct(self, x_):
- return self.drop(x_)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_dropout():
- x_shape = [32, 16, 2, 5]
- x = np.ones(x_shape).astype(np.float32)
- keep_prob = 0.4
- dropout = Net(keep_prob)
- tx = Tensor(x)
- output, mask = dropout(tx)
- # check output
- output_np = output.asnumpy()
- elem_count = x.size
- nonzero_count = np.count_nonzero(output_np)
- assert (elem_count * (keep_prob - 0.1)) < nonzero_count < (elem_count * (keep_prob + 0.1))
- output_sum = np.sum(output_np)
- x_sum = np.sum(x)
- assert abs(output_sum - x_sum)/x_sum < 0.1
- # check mask
- mask_np = mask.asnumpy()
- mask_sum = np.sum(mask_np)
- assert np.count_nonzero(mask_np) == nonzero_count
- assert abs(mask_sum - nonzero_count)/nonzero_count < 0.1
-
-
- class DropoutDynamic(nn.Cell):
- def __init__(self, keep_prob):
- super(DropoutDynamic, self).__init__()
- self.test_dynamic = inner.GpuConvertToDynamicShape()
- self.drop = P.Dropout(keep_prob)
-
- def construct(self, x):
- x = self.test_dynamic(x)
- return self.drop(x)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_dropout_dynamic():
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- x_1 = np.ones([32, 16, 2, 5]).astype(np.float32)
- x_2 = np.ones([32, 16, 2, 5, 6]).astype(np.float32)
- keep_prob = 0.4
- net = DropoutDynamic(keep_prob)
-
- output_1, mask_1 = net(Tensor(x_1))
- elem_count_1 = x_1.size
- nonzero_count_1 = np.count_nonzero(output_1.asnumpy())
- assert (elem_count_1 * (keep_prob - 0.1)) < nonzero_count_1 < (elem_count_1 * (keep_prob + 0.1))
- output_sum_1 = np.sum(output_1.asnumpy())
- x_sum_1 = np.sum(x_1)
- assert abs(output_sum_1 - x_sum_1)/x_sum_1 < 0.1
- mask_sum_1 = np.sum(mask_1.asnumpy())
- assert np.count_nonzero(mask_1.asnumpy()) == nonzero_count_1
- assert abs(mask_sum_1 - nonzero_count_1)/nonzero_count_1 < 0.1
-
- output_2, mask_2 = net(Tensor(x_2))
- elem_count_2 = x_2.size
- nonzero_count_2 = np.count_nonzero(output_2.asnumpy())
- assert (elem_count_2 * (keep_prob - 0.1)) < nonzero_count_2 < (elem_count_2 * (keep_prob + 0.1))
- output_sum_2 = np.sum(output_2.asnumpy())
- x_sum_2 = np.sum(x_2)
- assert abs(output_sum_2 - x_sum_2)/x_sum_2 < 0.1
- mask_sum_2 = np.sum(mask_2.asnumpy())
- assert np.count_nonzero(mask_2.asnumpy()) == nonzero_count_2
- assert abs(mask_sum_2 - nonzero_count_2)/nonzero_count_2 < 0.1
|