|
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common import dtype as mstype
- from mindspore.ops import operations as P
- from mindspore.ops.operations import _inner_ops as inner
-
-
- class BatchMatMulNet(nn.Cell):
- def __init__(self, transpose_a=False, transpose_b=False):
- super(BatchMatMulNet, self).__init__()
- self.batch_matmul = P.BatchMatMul(transpose_a, transpose_b)
-
- def construct(self, x, y):
- return self.batch_matmul(x, y)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_4d():
- input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32)
- input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = BatchMatMulNet()
- output = net(input_x, input_y)
- expect = [[[[20, 23, 26, 29]],
- [[200, 212, 224, 236]],
- [[596, 617, 638, 659]],
- [[1208, 1238, 1268, 1298]]],
-
- [[[2036, 2075, 2114, 2153]],
- [[3080, 3128, 3176, 3224]],
- [[4340, 4397, 4454, 4511]],
- [[5816, 5882, 5948, 6014]]]]
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_4d_float64():
- input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float64)
- input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float64)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = BatchMatMulNet()
- output = net(input_x, input_y)
- expect = [[[[20, 23, 26, 29]],
- [[200, 212, 224, 236]],
- [[596, 617, 638, 659]],
- [[1208, 1238, 1268, 1298]]],
-
- [[[2036, 2075, 2114, 2153]],
- [[3080, 3128, 3176, 3224]],
- [[4340, 4397, 4454, 4511]],
- [[5816, 5882, 5948, 6014]]]]
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_4d_transpose_a():
- input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32)
- input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = BatchMatMulNet(transpose_a=True)
- output = net(input_x, input_y)
- expect = [[[[20, 23, 26, 29]],
- [[200, 212, 224, 236]],
- [[596, 617, 638, 659]],
- [[1208, 1238, 1268, 1298]]],
-
- [[[2036, 2075, 2114, 2153]],
- [[3080, 3128, 3176, 3224]],
- [[4340, 4397, 4454, 4511]],
- [[5816, 5882, 5948, 6014]]]]
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_4d_transpose_b():
- input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32)
- input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = BatchMatMulNet(transpose_b=True)
- output = net(input_x, input_y)
- expect = [[[[5, 14, 23, 32]],
- [[158, 194, 230, 266]],
- [[527, 590, 653, 716]],
- [[1112, 1202, 1292, 1382]]],
-
- [[[1913, 2030, 2147, 2264]],
- [[2930, 3074, 3218, 3362]],
- [[4163, 4334, 4505, 4676]],
- [[5612, 5810, 6008, 6206]]]]
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_4d_transpose_ab():
- input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32)
- input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = BatchMatMulNet(transpose_a=True, transpose_b=True)
- output = net(input_x, input_y)
- expect = [[[[5, 14, 23, 32]],
- [[158, 194, 230, 266]],
- [[527, 590, 653, 716]],
- [[1112, 1202, 1292, 1382]]],
-
- [[[1913, 2030, 2147, 2264]],
- [[2930, 3074, 3218, 3362]],
- [[4163, 4334, 4505, 4676]],
- [[5612, 5810, 6008, 6206]]]]
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_4D_fp16():
- input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float16)
- input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float16)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = BatchMatMulNet()
- output = net(input_x, input_y)
- expect = np.array([[[[20, 23, 26, 29]],
- [[200, 212, 224, 236]],
- [[596, 617, 638, 659]],
- [[1208, 1238, 1268, 1298]]],
-
- [[[2036, 2076, 2114, 2152]],
- [[3080, 3128, 3176, 3224]],
- [[4340, 4396, 4456, 4510]],
- [[5816, 5880, 5948, 6016]]]]).astype(np.float16)
- assert (output.asnumpy() == expect).all()
-
-
- class BatchMatMul_d(nn.Cell):
- def __init__(self, transpose_a=False, transpose_b=False):
- super(BatchMatMul_d, self).__init__()
- self.batch_matmul = P.BatchMatMul(transpose_a, transpose_b)
- self.test_dynamic = inner.GpuConvertToDynamicShape()
-
- def construct(self, x, y):
- x = self.test_dynamic(x)
- y = self.test_dynamic(y)
- return self.batch_matmul(x, y)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_batchmatmul_dynamic():
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = BatchMatMul_d()
-
- x1 = np.arange(8).reshape(2, 2, 2).astype(np.float32)
- y1 = np.arange(28).reshape(2, 2, 7).astype(np.float32)
-
- output1 = net(Tensor(x1), Tensor(y1))
- expect1 = np.matmul(x1, y1)
- assert (output1.asnumpy() == expect1).all()
-
- x2 = np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3).astype(np.float32)
- y2 = np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4).astype(np.float32)
-
- output2 = net(Tensor(x2), Tensor(y2))
- expect2 = np.matmul(x2, y2)
- assert (output2.asnumpy() == expect2).all()
|