|
- # Copyright 2019-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import ms_function
- from mindspore.common.initializer import initializer
- from mindspore.common.parameter import Parameter
- from mindspore.ops import operations as P
- from mindspore.ops.operations import _inner_ops as inner
-
- class AddNet(nn.Cell):
- def __init__(self, nptype):
- super(AddNet, self).__init__()
-
- self.add = P.Add()
-
- np.random.seed(0)
- self.x = Parameter(initializer(
- Tensor(np.random.randn(2, 0).astype(nptype)), [2, 0]), name='x')
- self.y = Parameter(initializer(
- Tensor(np.random.randn(2, 1).astype(nptype)), [2, 1]), name='y')
-
- self.x1 = Parameter(initializer(
- Tensor(np.arange(3).reshape(3).astype(nptype)), [3]), name='x1')
- self.y1 = Parameter(initializer(
- Tensor(np.array([2]).astype(nptype)), [1]), name='y1')
-
- self.x2 = Parameter(initializer(
- Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype)), [3, 3, 3, 3]), name='x2')
- self.y2 = Parameter(initializer(
- Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype)), [3, 3, 3, 3]), name='y2')
-
- self.x3 = Parameter(initializer(
- Tensor(np.arange(1 * 1 * 3 * 3).reshape(1, 1, 3, 3).astype(nptype)), [1, 1, 3, 3]), name='x3')
- self.y3 = Parameter(initializer(
- Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype)), [3, 3, 3, 3]), name='y3')
-
- @ms_function
- def construct(self):
- return (
- self.add(self.x, self.y), self.add(self.x1, self.y1), self.add(self.x2, self.y2),
- self.add(self.x3, self.y3))
-
-
- def add(nptype):
- context.set_context(device_target='GPU')
-
- add_net = AddNet(nptype)
- output = add_net()
- expect0 = np.array([])
- expect1 = np.array([2, 3, 4]).astype(nptype)
- expect2 = np.array(
- [[[[0., 2., 4.],
- [6., 8., 10.],
- [12., 14., 16.]],
- [[18., 20., 22.],
- [24., 26., 28.],
- [30., 32., 34.]],
- [[36., 38., 40.],
- [42., 44., 46.],
- [48., 50., 52.]]],
- [[[54., 56., 58.],
- [60., 62., 64.],
- [66., 68., 70.]],
- [[72., 74., 76.],
- [78., 80., 82.],
- [84., 86., 88.]],
- [[90., 92., 94.],
- [96., 98., 100.],
- [102., 104., 106.]]],
- [[[108., 110., 112.],
- [114., 116., 118.],
- [120., 122., 124.]],
- [[126., 128., 130.],
- [132., 134., 136.],
- [138., 140., 142.]],
- [[144., 146., 148.],
- [150., 152., 154.],
- [156., 158., 160.]]]]).astype(nptype)
- expect3 = np.array(
- [[[[0., 2., 4.],
- [6., 8., 10.],
- [12., 14., 16.]],
- [[9., 11., 13.],
- [15., 17., 19.],
- [21., 23., 25.]],
- [[18., 20., 22.],
- [24., 26., 28.],
- [30., 32., 34.]]],
- [[[27., 29., 31.],
- [33., 35., 37.],
- [39., 41., 43.]],
- [[36., 38., 40.],
- [42., 44., 46.],
- [48., 50., 52.]],
- [[45., 47., 49.],
- [51., 53., 55.],
- [57., 59., 61.]]],
- [[[54., 56., 58.],
- [60., 62., 64.],
- [66., 68., 70.]],
- [[63., 65., 67.],
- [69., 71., 73.],
- [75., 77., 79.]],
- [[72., 74., 76.],
- [78., 80., 82.],
- [84., 86., 88.]]]]).astype(nptype)
- assert (output[0].asnumpy() == expect0).all()
- assert (output[1].asnumpy() == expect1).all()
- assert (output[2].asnumpy() == expect2).all()
- assert (output[3].asnumpy() == expect3).all()
-
-
- @pytest.mark.skip(reason='0 in shape is not support')
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_add_float64():
- add(np.float64)
-
-
- @pytest.mark.skip(reason='0 in shape is not support')
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_add_float32():
- add(np.float32)
-
-
- @pytest.mark.skip(reason='0 in shape is not support')
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_add_float16():
- add(np.float16)
-
-
- @pytest.mark.skip(reason='0 in shape is not support')
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_add_int64():
- add(np.int64)
-
- @pytest.mark.skip(reason='0 in shape is not support')
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_add_int32():
- add(np.int32)
-
- class Tensoradd_d(nn.Cell):
- def __init__(self):
- super(Tensoradd_d, self).__init__()
- self.test_dynamic = inner.GpuConvertToDynamicShape()
- self.add = P.Add()
-
- def construct(self, x, y):
- x = self.test_dynamic(x)
- y = self.test_dynamic(y)
- return self.add(x, y)
-
-
- def add_dynamic(nptype):
- context.set_context(device_target='GPU', mode=context.GRAPH_MODE)
- net = Tensoradd_d()
-
- x1 = Tensor(np.arange(3).reshape(3).astype(nptype))
- y1 = Tensor(np.array([2]).astype(nptype))
-
- x2 = Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype))
- y2 = Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype))
-
- expect1 = np.array([2, 3, 4])
- expect2 = np.array(
- [[[[0., 2., 4.],
- [6., 8., 10.],
- [12., 14., 16.]],
- [[18., 20., 22.],
- [24., 26., 28.],
- [30., 32., 34.]],
- [[36., 38., 40.],
- [42., 44., 46.],
- [48., 50., 52.]]],
- [[[54., 56., 58.],
- [60., 62., 64.],
- [66., 68., 70.]],
- [[72., 74., 76.],
- [78., 80., 82.],
- [84., 86., 88.]],
- [[90., 92., 94.],
- [96., 98., 100.],
- [102., 104., 106.]]],
- [[[108., 110., 112.],
- [114., 116., 118.],
- [120., 122., 124.]],
- [[126., 128., 130.],
- [132., 134., 136.],
- [138., 140., 142.]],
- [[144., 146., 148.],
- [150., 152., 154.],
- [156., 158., 160.]]]])
-
- output1 = net(x1, y1)
- output2 = net(x2, y2)
- assert (output1.asnumpy() == expect1).all()
- assert (output2.asnumpy() == expect2).all()
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_add_dynamic_float64():
- add_dynamic(np.float64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_add_dynamic_float32():
- add_dynamic(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_add_dynamic_float16():
- add_dynamic(np.float16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_add_dynamic_int64():
- add_dynamic(np.int64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_add_dynamic_int32():
- add_dynamic(np.int32)
|