|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import ms_function
- from mindspore.ops import operations as P
- from mindspore.ops import functional as F
- from mindspore.common import dtype as mstype
- from mindspore.common.parameter import Parameter
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True)
-
-
- class Net(nn.Cell):
- def __init__(self, decay_flag=True):
- super(Net, self).__init__()
- self.decay_flag = decay_flag
- self.op_mul = P.Mul()
- self.op_square = P.Square()
- self.op_sqrt = P.Sqrt()
- self.op_cast = P.Cast()
- self.op_reshape = P.Reshape()
- self.op_shape = P.Shape()
- self.param = Parameter(Tensor(np.array([0.1, 0.3, 0.5]).astype(np.float32)), name='param')
- self.m = Parameter(Tensor(np.array([0.1, 0.3, 0.5]).astype(np.float32)), name='m')
- self.v = Parameter(Tensor(np.array([0.1, 0.3, 0.5]).astype(np.float32)), name='v')
-
- @ms_function
- def construct(self, beta1, beta2, gradient, eps, weight_decay_tensor, lr):
- param_fp32 = self.op_cast(self.param, mstype.float32)
- m_fp32 = self.op_cast(self.m, mstype.float32)
- v_fp32 = self.op_cast(self.v, mstype.float32)
- gradient_fp32 = self.op_cast(gradient, mstype.float32)
-
- next_m = self.op_mul(beta1, m_fp32) + \
- self.op_mul(self.op_cast(F.tuple_to_array((1.0,)), mstype.float32) - beta1, gradient_fp32)
- next_v = self.op_mul(beta2, v_fp32) + self.op_mul(self.op_cast(F.tuple_to_array((1.0,)), mstype.float32) - \
- beta2, self.op_square(gradient_fp32))
- update = next_m / (eps + self.op_sqrt(next_v))
- if self.decay_flag:
- update = self.op_mul(weight_decay_tensor, param_fp32) + update
- update_with_lr = self.op_mul(lr, update)
- next_param = param_fp32 - self.op_reshape(update_with_lr, self.op_shape(param_fp32))
-
- next_v = F.depend(next_v, F.assign(self.param, next_param))
- next_v = F.depend(next_v, F.assign(self.m, next_m))
- next_v = F.depend(next_v, F.assign(self.v, next_v))
- return next_v
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_adam_fusion():
- beta1 = Tensor(np.array([0.9]).astype(np.float32))
- beta2 = Tensor(np.array([0.999]).astype(np.float32))
- lr = Tensor(np.array([0.001]).astype(np.float32))
- eps = Tensor(np.array([1e-6]).astype(np.float32))
- weight_decay_tensor = Tensor(np.array([0.001]).astype(np.float32))
-
- gradient = Tensor(np.array([0.01, 0.03, 0.05]).astype(np.float32))
- opt = Net(True)
- _ = opt(beta1, beta2, gradient, eps, weight_decay_tensor, lr)
-
- param_expect = np.array([0.09971199, 0.29950103, 0.4993557]).astype(np.float32)
- m_expect = np.array([0.091, 0.273, 0.45499998]).astype(np.float32)
- v_expect = np.array([0.0999001, 0.29970092, 0.4995025]).astype(np.float32)
- assert np.allclose(opt.param.data.asnumpy(), param_expect)
- assert np.allclose(opt.m.data.asnumpy(), m_expect)
- assert np.allclose(opt.v.data.asnumpy(), v_expect)
|