|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common import dtype as mstype
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.uniq = P.Unique()
-
- def construct(self, x):
- return self.uniq(x)
-
-
- def test_net_fp32():
- x = Tensor(np.array([1, 2, 5, 2]), mstype.float32)
- uniq = Net()
- output = uniq(x)
- print("x:\n", x)
- print("y:\n", output[0])
- print("idx:\n", output[1])
- expect_y_result = [1., 2., 5.]
- expect_idx_result = [0, 1, 2, 1]
-
- assert (output[0].asnumpy() == expect_y_result).all()
- assert (output[1].asnumpy() == expect_idx_result).all()
-
- def test_net_fp16():
- x = Tensor(np.array([1, 5, 2, 2]), mstype.float16)
- uniq = Net()
- output = uniq(x)
- print("x:\n", x)
- print("y:\n", output[0])
- print("idx:\n", output[1])
- expect_y_result = [1., 5., 2.]
- expect_idx_result = [0, 1, 2, 2]
-
- assert (output[0].asnumpy() == expect_y_result).all()
- assert (output[1].asnumpy() == expect_idx_result).all()
-
- def test_net_int32():
- x = Tensor(np.array([1, 2, 5, 2]), mstype.int32)
- uniq = Net()
- output = uniq(x)
- print("x:\n", x)
- print("y:\n", output[0])
- print("idx:\n", output[1])
- expect_y_result = [1, 2, 5]
- expect_idx_result = [0, 1, 2, 1]
-
- assert (output[0].asnumpy() == expect_y_result).all()
- assert (output[1].asnumpy() == expect_idx_result).all()
-
-
- def test_net_int64():
- x = Tensor(np.array([1, 2, 5, 2]), mstype.int64)
- uniq = Net()
- output = uniq(x)
- print("x:\n", x)
- print("y:\n", output[0])
- print("idx:\n", output[1])
- expect_y_result = [1, 2, 5]
- expect_idx_result = [0, 1, 2, 1]
-
- assert (output[0].asnumpy() == expect_y_result).all()
- assert (output[1].asnumpy() == expect_idx_result).all()
|