|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
- import mindspore.context as context
- from mindspore import Tensor
- from mindspore.nn import Cell
- import mindspore.ops as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
-
- class SqueezeNet(Cell):
- def __init__(self):
- super(SqueezeNet, self).__init__()
- self.squeeze = P.Squeeze()
-
- def construct(self, x):
- return self.squeeze(x)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_squeeze_shape_float32():
- x = np.ones(shape=[1, 2, 1, 1, 8, 3, 1]).astype(np.float32)
- expect = np.ones(shape=[2, 8, 3]).astype(np.float32)
- net = SqueezeNet()
- result = net(Tensor(x))
- assert np.allclose(result.asnumpy(), expect, rtol=1.e-4,
- atol=1.e-8, equal_nan=True)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_squeeze_shape_int32():
- x = np.array([[7], [11]]).astype(np.int32)
- expect = np.array([7, 11]).astype(np.int32)
- net = SqueezeNet()
- result = net(Tensor(x))
- assert np.allclose(result.asnumpy(), expect, rtol=1.e-4,
- atol=1.e-8, equal_nan=True)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_squeeze_shape_bool():
- x = np.array([[True], [False]]).astype(np.bool_)
- expect = np.array([True, False]).astype(np.bool_)
- net = SqueezeNet()
- result = net(Tensor(x))
- assert np.allclose(result.asnumpy(), expect, rtol=1.e-4,
- atol=1.e-8, equal_nan=True)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_squeeze_shape_float64():
- x = np.random.random([1, 2, 1, 1, 8, 3, 1]).astype(np.float64)
- expect = np.squeeze(x)
- net = SqueezeNet()
- result = net(Tensor(x))
- print(result.asnumpy()[0][0], expect[0][0])
- assert np.allclose(result.asnumpy(), expect, rtol=1.e-4,
- atol=1.e-8, equal_nan=True)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_squeeze_shape_uint16():
- x = np.random.random([1, 2, 1, 1, 8, 3, 1]).astype(np.uint16)
- expect = np.squeeze(x)
- net = SqueezeNet()
- result = net(Tensor(x))
- print(result.asnumpy()[0][0], expect[0][0])
- assert np.allclose(result.asnumpy(), expect, rtol=1.e-4,
- atol=1.e-8, equal_nan=True)
|