|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common import dtype as mstype
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
-
-
- class Slice(nn.Cell):
- def __init__(self):
- super(Slice, self).__init__()
- self.slice = P.Slice()
-
- def construct(self, x):
- return self.slice(x, (0, 1, 0), (2, 1, 3))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_slice():
- x = Tensor(
- np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]), mstype.float32)
- expect = [[[2., -2., 2.]],
- [[4., -4., 4.]]]
-
- slice_op = Slice()
- output = slice_op(x)
- assert (output.asnumpy() == expect).all()
-
-
- class Slice2(nn.Cell):
- def __init__(self):
- super(Slice2, self).__init__()
- self.slice = P.Slice()
-
- def construct(self, x):
- return self.slice(x, (1, 0, 0), (1, 2, 3))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_slice2():
- x = Tensor(np.arange(3 * 2 * 3).reshape(3, 2, 3), mstype.float32)
- expect = [[[6., 7., 8.],
- [9., 10., 11.]]]
-
- slice_op = Slice2()
- output = slice_op(x)
- assert (output.asnumpy() == expect).all()
-
- def test_slice_float64():
- data = Tensor(np.array([[[1, 1, 1], [2, 2, 2]],
- [[3, 3, 3], [4, 4, 4]],
- [[5, 5, 5], [6, 6, 6]]]).astype(np.float64))
- slice_op = P.Slice()
- output = slice_op(data, (1, 0, 0), (1, 1, 3))
- expect = [[[3.0, 3.0, 3.0]]]
- assert (output.asnumpy() == expect).all()
-
- class Slice3(nn.Cell):
- def __init__(self):
- super(Slice3, self).__init__()
- self.relu = nn.ReLU()
-
- def construct(self, x):
- return (x[..., -1], x[..., 2:1:-1], x[1:3:1, 0, ...], x[-1, 0, ...])
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_slice3():
- inputx = np.random.rand(4, 4, 4, 4).astype(np.float32)
- x = Tensor(inputx)
- slice_op = Slice3()
- output = slice_op(x)
- assert (output[0].asnumpy() == inputx[..., -1]).all()
- assert (output[1].asnumpy() == inputx[..., 2:1:-1]).all()
- assert (output[2].asnumpy() == inputx[1:3:1, 0, ...]).all()
- assert (output[3].asnumpy() == inputx[-1, 0, ...]).all()
-
-
- class Slice4(nn.Cell):
- def __init__(self):
- super(Slice4, self).__init__()
- self.relu = nn.ReLU()
-
- def construct(self, x):
- return x[:10:1, :, 2:3:1]
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_slice4():
- inputx = np.random.rand(4, 4, 4).astype(np.float32)
- x = Tensor(inputx)
- slice_op = Slice4()
- output = slice_op(x)
- assert (output.asnumpy() == inputx[:10:1, :, 2:3:1]).all()
-
-
- class Slice5(nn.Cell):
- def __init__(self, begin, size):
- super(Slice5, self).__init__()
- self.relu = nn.ReLU()
- self.slice = P.Slice()
- self.begin = begin
- self.size = size
-
- def construct(self, x):
- return self.slice(x, self.begin, self.size)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_slice5():
- inputx = np.arange(3 * 5 * 4).reshape(3, 5, 4).astype(np.float32)
- x = Tensor(inputx)
- begin = (0, 1, 0)
- size = (3, 4, 4)
- slice_op = Slice5(begin, size)
- output = slice_op(x)
- assert (output.asnumpy() == inputx[0:3:1, 1:5:1, 0:4:1]).all()
-
-
- class Slice6(nn.Cell):
- def __init__(self):
- super(Slice6, self).__init__()
- self.relu = nn.ReLU()
-
- def construct(self, x):
- return (x[-10:], x[-5:10:2, :, :], x[-10:10:1, :, -10:10:1])
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_slice6():
- inputx = np.random.rand(4, 4, 4).astype(np.float32)
- x = Tensor(inputx)
- slice_op = Slice6()
- output = slice_op(x)
- assert (output[0].asnumpy() == inputx[-10:]).all()
- assert (output[1].asnumpy() == inputx[-5:10:2, :, :]).all()
- assert (output[2].asnumpy() == inputx[-10:10:1, :, -10:10:1]).all()
-
-
- class StridedSlice(nn.Cell):
- def __init__(self, begin, end, stride):
- super(StridedSlice, self).__init__()
- self.begin = begin
- self.end = end
- self.stride = stride
- self.stride_slice = P.StridedSlice()
-
- def construct(self, x):
- return self.stride_slice(x, self.begin, self.end, self.stride)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_strided_slice_bool_type():
- input_x = Tensor([[[False, False, True], [False, True, False]], [[False, True, False], [True, False, False]],
- [[False, True, True], [True, False, True]]], mstype.bool_)
- begin = (1, 0, 0)
- end = (2, 1, 3)
- stride = (1, 1, 1)
- slice_op = StridedSlice(begin, end, stride)
- output = slice_op(input_x)
- expected_output = np.array([False, True, False])
- assert (output.asnumpy() == expected_output).all()
-
- if __name__ == '__main__':
- test_slice()
- test_slice2()
- test_slice3()
- test_slice4()
- test_slice5()
- test_slice6()
- test_strided_slice_bool_type()
|