|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import pytest
- import numpy as np
-
- import mindspore
- import mindspore.nn as nn
- import mindspore.context as context
-
- from mindspore import Tensor
- from mindspore.ops.composite import GradOperation
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu_training
- @pytest.mark.env_onecard
- def test_pad_basic():
- """
- Test array is being padded with 0's
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
- # float32
- test_arr = np.array([[1, 2], [3, 4]]).astype(np.float32)
- test_arr_expected = np.array(
- [[0, 0, 0, 0], [0, 1, 2, 0], [0, 3, 4, 0], [0, 0, 0, 0]]).astype(np.float32)
- x_test = Tensor(test_arr, dtype=mindspore.float32)
- pad_op = nn.Pad(mode='CONSTANT', paddings=((1, 1), (1, 1)))
- y_test = pad_op(x_test).asnumpy()
- np.testing.assert_array_equal(y_test, test_arr_expected)
-
- # float16
- test_arr = np.array([[1, 2], [3, 4]]).astype(np.float16)
- test_arr_expected = np.array(
- [[0, 0, 0, 0], [0, 1, 2, 0], [0, 3, 4, 0], [0, 0, 0, 0]]).astype(np.float16)
- x_test = Tensor(test_arr, dtype=mindspore.float16)
- pad_op = nn.Pad(mode='CONSTANT', paddings=((1, 1), (1, 1)))
- y_test = pad_op(x_test).asnumpy()
- np.testing.assert_array_equal(y_test, test_arr_expected)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu_training
- @pytest.mark.env_onecard
- def test_pad_row():
- """
- Test correct row padding
- """
- context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
-
- test_arr_1 = np.random.rand(40, 40).astype(np.float32)
- test_paddings_1 = ((2, 3), (0, 0))
- test_arr_2 = np.random.randn(3, 10, 30, 30).astype(np.float32)
- test_paddings_2 = ((0, 0), (0, 0), (3, 0), (0, 0))
-
- pad_op_row_1 = nn.Pad(mode='CONSTANT', paddings=test_paddings_1)
- pad_op_row_2 = nn.Pad(mode='CONSTANT', paddings=test_paddings_2)
-
- x_test_1 = Tensor(np.array(test_arr_1), dtype=mindspore.float32)
- x_test_2 = Tensor(np.array(test_arr_2), dtype=mindspore.float32)
- y_test_1 = pad_op_row_1(x_test_1).asnumpy()
- y_test_2 = pad_op_row_2(x_test_2).asnumpy()
-
- # check size
- assert y_test_1.shape == (45, 40)
- assert y_test_2.shape == (3, 10, 33, 30)
-
- # check values - select correct sections
- np.testing.assert_equal(y_test_1[2:-3, :], test_arr_1)
- np.testing.assert_equal(y_test_2[:, :, 3:, :], test_arr_2)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu_training
- @pytest.mark.env_onecard
- def test_pad_column():
- """
- Test correct column padding
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
- test_arr_1 = np.random.randn(40, 40).astype(np.float32)
- test_paddings_1 = ((0, 0), (3, 3))
- test_arr_2 = np.random.randn(3, 10, 30, 30).astype(np.float32)
- test_paddings_2 = ((0, 0), (0, 0), (0, 0), (6, 1))
-
- pad_op_col_1 = nn.Pad(mode='CONSTANT', paddings=test_paddings_1)
- pad_op_col_2 = nn.Pad(mode='CONSTANT', paddings=test_paddings_2)
-
- x_test_1 = Tensor(np.array(test_arr_1), dtype=mindspore.float32)
- x_test_2 = Tensor(np.array(test_arr_2), dtype=mindspore.float32)
- y_test_1 = pad_op_col_1(x_test_1).asnumpy()
- y_test_2 = pad_op_col_2(x_test_2).asnumpy()
-
- # check size
- assert y_test_1.shape == (40, 46)
- assert y_test_2.shape == (3, 10, 30, 37)
-
- # check values - select correct sections - should match
- np.testing.assert_equal(y_test_1[:, 3:-3], test_arr_1)
- np.testing.assert_equal(y_test_2[:, :, :, 6:-1], test_arr_2)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu_training
- @pytest.mark.env_onecard
- def test_pad_3d_pad():
- """
- Test full 3d padding, with all 3 input types
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
- # float32
- test_arr = np.random.randn(5, 3, 30, 30).astype(np.float32)
- test_paddings = ((0, 0), (2, 1), (0, 1), (0, 2)) # padding 3 dims now
- pad_op_3d = nn.Pad(mode='CONSTANT', paddings=test_paddings)
- x_test = Tensor(np.array(test_arr), dtype=mindspore.float32)
- y_test = pad_op_3d(x_test).asnumpy()
- assert y_test.shape == (5, 6, 31, 32)
- np.testing.assert_equal(test_arr, y_test[:, 2:-1, :-1, :-2])
-
- # float16
- test_arr = np.random.randn(5, 3, 30, 30).astype(np.float16)
- test_paddings = ((0, 0), (2, 1), (0, 1), (0, 2))
- pad_op_3d = nn.Pad(mode='CONSTANT', paddings=test_paddings)
- x_test = Tensor(np.array(test_arr), dtype=mindspore.float16)
- y_test = pad_op_3d(x_test).asnumpy()
- assert y_test.shape == (5, 6, 31, 32)
- np.testing.assert_equal(test_arr, y_test[:, 2:-1, :-1, :-2])
-
- # int32
- test_arr = np.random.randint(1, 3000, (5, 3, 30, 30)).astype(np.int32)
- test_paddings = ((0, 0), (2, 1), (0, 1), (0, 2))
- pad_op_3d = nn.Pad(mode='CONSTANT', paddings=test_paddings)
- x_test = Tensor(np.array(test_arr), dtype=mindspore.int32)
- y_test = pad_op_3d(x_test).asnumpy()
- assert y_test.shape == (5, 6, 31, 32)
- np.testing.assert_equal(test_arr, y_test[:, 2:-1, :-1, :-2])
-
-
- # For testing backprop
- class Grad(nn.Cell):
- def __init__(self, network):
- super(Grad, self).__init__()
- self.grad = GradOperation(get_all=True, sens_param=True)
- self.network = network
-
- def construct(self, input_, output_grad):
- return self.grad(self.network)(input_, output_grad)
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.pad = nn.Pad(mode="CONSTANT", paddings=(
- (0, 0), (4, 3), (1, 1), (0, 2)))
-
- def construct(self, x):
- return self.pad(x)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu_training
- @pytest.mark.env_onecard
- def test_pad_3d_backprop():
- """
- Confirm correct 3d padding backprop
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- net = Grad(Net())
- padded_shape = (5, 10, 32, 32)
-
- # float32
- test_arr = np.random.randn(5, 3, 30, 30).astype(np.float32)
- x_test = Tensor(test_arr, dtype=mindspore.float32)
- dy = np.random.randn(*padded_shape).astype(np.float32)
- expected_dx = dy[:, 4:-3, 1:-1, :-2]
- dx = net(x_test, Tensor(dy))
- dx = dx[0].asnumpy()
- np.testing.assert_array_equal(dx, expected_dx)
-
- # float16
- test_arr = np.random.randn(5, 3, 30, 30).astype(np.float16)
- x_test = Tensor(test_arr, dtype=mindspore.float16)
- dy = np.random.randn(*padded_shape).astype(np.float16)
- expected_dx = dy[:, 4:-3, 1:-1, :-2]
- dx = net(x_test, Tensor(dy))
- dx = dx[0].asnumpy()
- np.testing.assert_array_equal(dx, expected_dx)
-
- # int32
- test_arr = np.random.randint(1, 3000, (5, 3, 30, 30)).astype(np.int32)
- x_test = Tensor(test_arr, dtype=mindspore.int32)
- dy = np.random.randn(*padded_shape).astype(np.int32)
- expected_dx = dy[:, 4:-3, 1:-1, :-2]
- dx = net(x_test, Tensor(dy))
- dx = dx[0].asnumpy()
- np.testing.assert_array_equal(dx, expected_dx)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu_training
- @pytest.mark.env_onecard
- def test_pad_error_cases():
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
- # TEST 1 - Neg padding values
- test_op = nn.Pad(paddings=((0, 0), (-1, -1)), mode="CONSTANT")
- test_arr = np.random.randn(3, 3)
- test_arr_ms = Tensor(test_arr, dtype=mindspore.float32)
-
- with pytest.raises(ValueError):
- test_op(test_arr_ms)
-
- # TEST 2 - Mismatched input size and paddings - 1D tensor
- test_op = nn.Pad(paddings=((0, 0), (1, 0)), mode="CONSTANT")
- test_arr = np.random.randn(3) # 1D Tensor
- test_arr_ms = Tensor(test_arr, dtype=mindspore.float32)
-
- with pytest.raises(ValueError):
- test_op(test_arr_ms)
-
- # TEST 3 - Mismatched input size and paddings - 2D tensor, 3D padding
- test_op = nn.Pad(paddings=((0, 0), (1, 0)), mode="CONSTANT") # 2D Padding
- test_arr = np.random.randn(1, 3, 3) # 3D Tensor
- test_arr_ms = Tensor(test_arr, dtype=mindspore.float32)
-
- with pytest.raises(ValueError):
- test_op(test_arr_ms)
-
- # TEST 4 - 1D Paddings should not work
- with pytest.raises(TypeError):
- test_op = nn.Pad(paddings=((0, 2)), mode="CONSTANT")
-
- # TEST 5 - Padding beyond 4d - (added check in nn file in PR)
- with pytest.raises(ValueError):
- _ = nn.Pad(paddings=((0, 0), (0, 0,), (0, 0), (0, 0),
- (1, 0)), mode="CONSTANT") # 2D Padding
|