|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0(the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http: // www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == ==
-
- import numpy as np
- import pytest
-
- import mindspore.common.dtype as mstype
- import mindspore.nn as nn
- from mindspore import Tensor, context
- from mindspore.common.api import ms_function
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.mul = P.Mul()
-
- @ms_function
- def construct(self, x, y):
- return self.mul(x, y)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_mul():
- x0 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32))
- y0 = Tensor(np.random.uniform(-2, 2, (1, 1, 1, 1)).astype(np.float32))
- x1 = Tensor(np.random.uniform(-2, 2, (1, 3, 1, 4)).astype(np.float32))
- y1 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32))
- x2 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32))
- y2 = Tensor(2, mstype.float32)
- x3 = Tensor(2, mstype.float32)
- y3 = Tensor(2, mstype.float32)
- x4 = Tensor(np.random.uniform(-2, 2, (4)).astype(np.float32))
- y4 = Tensor(np.random.uniform(-2, 2, (4, 4)).astype(np.float32))
- mul = Net()
- out = mul(x0, y0).asnumpy()
- exp = x0.asnumpy() * y0.asnumpy()
- diff = np.abs(out - exp)
- err = np.ones(shape=exp.shape) * 1.0e-5
- assert np.all(diff < err)
- assert out.shape == exp.shape
-
- out = mul(x1, y1).asnumpy()
- exp = x1.asnumpy() * y1.asnumpy()
- diff = np.abs(out - exp)
- err = np.ones(shape=exp.shape) * 1.0e-5
- assert np.all(diff < err)
- assert out.shape == exp.shape
-
- out = mul(x2, y2).asnumpy()
- exp = x2.asnumpy() * y2.asnumpy()
- diff = np.abs(out - exp)
- err = np.ones(shape=exp.shape) * 1.0e-5
- assert np.all(diff < err)
- assert out.shape == exp.shape
-
- out = mul(x3, y3).asnumpy()
- exp = x3.asnumpy() * y3.asnumpy()
- diff = np.abs(out - exp)
- err = np.ones(shape=exp.shape) * 1.0e-5
- assert np.all(diff < err)
- assert out.shape == exp.shape
-
- out = mul(x4, y4).asnumpy()
- exp = x4.asnumpy() * y4.asnumpy()
- diff = np.abs(out - exp)
- err = np.ones(shape=exp.shape) * 1.0e-5
- assert np.all(diff < err)
- assert out.shape == exp.shape
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_mul_int32():
- x0 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.int32))
- y0 = Tensor(np.random.uniform(-2, 2, (1, 1, 1, 1)).astype(np.int32))
- x1 = Tensor(np.random.uniform(-2, 2, (1, 3, 1, 4)).astype(np.int32))
- y1 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.int32))
- x2 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.int32))
- y2 = Tensor(2, mstype.int32)
- x3 = Tensor(2, mstype.int32)
- y3 = Tensor(2, mstype.int32)
- x4 = Tensor(np.random.uniform(-2, 2, (4)).astype(np.int32))
- y4 = Tensor(np.random.uniform(-2, 2, (4, 4)).astype(np.int32))
- mul = Net()
- out = mul(x0, y0).asnumpy()
- exp = x0.asnumpy() * y0.asnumpy()
- diff = np.abs(out - exp)
- err = np.ones(shape=exp.shape) * 1.0e-5
- assert np.all(diff < err)
- assert out.shape == exp.shape
-
- out = mul(x1, y1).asnumpy()
- exp = x1.asnumpy() * y1.asnumpy()
- diff = np.abs(out - exp)
- err = np.ones(shape=exp.shape) * 1.0e-5
- assert np.all(diff < err)
- assert out.shape == exp.shape
-
- out = mul(x2, y2).asnumpy()
- exp = x2.asnumpy() * y2.asnumpy()
- diff = np.abs(out - exp)
- err = np.ones(shape=exp.shape) * 1.0e-5
- assert np.all(diff < err)
- assert out.shape == exp.shape
-
- out = mul(x3, y3).asnumpy()
- exp = x3.asnumpy() * y3.asnumpy()
- diff = np.abs(out - exp)
- err = np.ones(shape=exp.shape) * 1.0e-5
- assert np.all(diff < err)
- assert out.shape == exp.shape
-
- out = mul(x4, y4).asnumpy()
- exp = x4.asnumpy() * y4.asnumpy()
- diff = np.abs(out - exp)
- err = np.ones(shape=exp.shape) * 1.0e-5
- assert np.all(diff < err)
- assert out.shape == exp.shape
|