|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import ms_function
- from mindspore.ops import operations as P
- from mindspore.ops.composite import GradOperation
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
-
- class Grad(nn.Cell):
- def __init__(self, network):
- super(Grad, self).__init__()
- self.grad = GradOperation(get_all=True, sens_param=True)
- self.network = network
-
- @ms_function
- def construct(self, input_, output_grad):
- return self.grad(self.network)(input_, output_grad)
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.HSwish = P.HSwish()
-
- def construct(self, x):
- return self.HSwish(x)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_net():
- x = np.array([-1, -2, 0, 2, 1]).astype(np.float32)
- hswish = Net()
- y = hswish(Tensor(x))
- expect = np.array([-0.33333334, -0.33333334, 0., 1.6666666, 0.6666667]).astype(np.float32)
- assert np.all(y.asnumpy() == expect)
- sens = np.random.randn(5).astype(np.float32)
- backword_net = Grad(Net())
- output = backword_net(Tensor(x), Tensor(sens))
- print(len(output))
- print(output[0].asnumpy())
|